

5. Planificación de las Enseñanzas

5.1 Descripción general del plan de estudios

a) Descripción general del plan de estudios

El programa pretende que los alumnos adquieran conocimientos científicos y tecnológicos avanzados sobre la Ciencia y Tecnología Informática y dominen un conjunto de principios teóricos, métodos científicos e instrumentos formales que les capaciten para llevar a cabo trabajos de investigación, desarrollo e innovación en este área, todo ello de forma flexible para facilitar su adaptación a un entorno tan rápidamente cambiante como es el de la Informática. El principal objetivo, por tanto, de este Máster es proporcionar habilidades de investigación, aptitudes y conocimientos en Tecnologías Informáticas avanzadas orientadas a la creación de nuevos investigadores en Ingeniería Informática. Se persigue, por tanto:

- Dar una formación científica/tecnológica avanzada. Se pretende formar a los alumnos en los nuevos avances realizados en diferentes disciplinas de la Ingeniería Informática, ofreciendo perspectivas verticales y transversales. Mientras que las perspectivas verticales profundizan en un área muy específica, las transversales ofrecen a los alumnos la posibilidad de estudiar diversos temas que puedan ser de utilidad en sus futuros trabajos de investigación, proporcionándoles así una formación más completa.
- Dar una formación en investigación. Se desea preparar investigadores en áreas técnicas y tecnológicas, con marcadas habilidades de análisis, síntesis y de comparación crítica, y capaces de aplicar de forma sistemática métodos científicos que les permitan conseguir resultados innovadores de forma rigurosa, contrastable y fiable.
- Permitir la integración en el mundo científico internacional. También se persigue que los alumnos estén al tanto de las diferentes investigaciones realizadas en centros de investigación internacionales, para lo cual se invitará a científicos de diversos campos que ayuden a formar al alumnado. Con ello se pretende fomentar tanto la comunicación como la integración en grupos de investigación extranjeros.
- Dotar al alumno de la autonomía y de las herramientas necesarias para desarrollar formalmente trabajos de investigación.
- Dotar al alumno de las habilidades y conocimientos necesarios para abordar la posterior realización de una tesis doctoral en el área de ingeniería Informática.

El plan de estudios se compone de 12 créditos obligatorios, 30 créditos optativos y 18 créditos de Trabajo Fin de Máster, lo cual representa un total de 60 créditos ECTS. La siguiente tabla refleja la estructura del plan de estudios.

TIPO DE MATERIA	CRÉDITOS	OBSERVACIONES
Obligatorias	30	Obligatorios para todos los estudiantes
Optativas	12	El alumno tiene que escoger 12 créditos de entre un total de 13 asignaturas optativas ofertadas.
Trabajo Fin de Máster	18	Obligatorio para todos los estudiantes

CRÉDITOS TOTALES	60	TOTAL

La siguiente tabla muestra la relación de asignaturas ofertadas, el tipo de asignatura y el número de créditos que supone.

(ORGA	NIZACIÓN TEMPORAL DEL MÁSTER U	NIVERS		O EN CI ntorias	ENCIA	Y TECNOLOGÍA INFORMÁTICA: asign	aturas	
Curso	Сb	ASIGNATURA	Tipo	ECTS	Curso	Ctr	ASIGNATURA	Tipo	ECTS
1	1	Seminarios: Métodos de Investigación	ОВ	3	1	2	Trabajo fin de Máster	TFM OB	18
1	A*	Seminarios: Temas Emergentes	ОВ	6	1	2	Sistemas Paralelos y Distribuidos	ОВ	3
1	1	Inteligencia Artificial de Inspiración Biológica	ОВ	3	1	2	Ciberseguridad y Privacidad	ОВ	3
1	1	Planificación Automática	ОВ	3	1	2	Procesamiento del lenguaje natural con Aprendizaje	ОВ	3
1	1	Digitalización de Ingeniería de Sistemas complejos. 3ECTS.	ОВ	3	1	2	Informática centrada en el humano	ОВ	3

A continuación, se incluye la lista de asignaturas optativas de las que se parte, esta lista es revisable cada año para poder ampliar la oferta de acuerdo con las cambiantes necesidades del entorno.

ORGA	NIZA	CIÓN TEMPORAL DEL MÁSTER UNIVE	RSITAR	IO EN	C	IENCIA Y	/ TEC	NOLOGÍA INFORMÁTICA: asignatura	s optat	ivas
Curso	Ctr	ASIGNATURA	Tipo	ECTS		Curso	Ctr	ASIGNATURA	Tipo	ECTS
1	1	Lean Startup	ОР	6		1	2	Simulación de Robots	ОР	3
1	1	Datos masivos y encadenados	ОР	3		1	2	Percepción 3D	ОР	3
1	1	Sistemas de ciberseguridad	ОР	6		1	2	Software para internet de las cosas.	ОР	6
1	1	Computación de altas prestaciones	ОР	6		1	2	Aplicaciones avanzadas de la IA	ОР	6
1	1	Robótica	ОР	6		1	2	Calidad del Software	ОР	6
						1	2	Introducción a la Computación Cuántica	ОР	3

Los cursos obligatorios engloban un corpus de conocimientos fundamentales y necesarios para la adquisición de las competencias que debe proporcionar el título. La asignatura Seminarios: métodos de investigación, establece las bases que permitan a los estudiantes abordar sus trabajos de investigación de manera satisfactoria incrementando su eficiencia y productividad. En la asignatura obligatoria de Seminarios se planifican una serie de tutoriales, charlas o conferencias, impartidos por profesores invitados de reconocido prestigio, y que están enfocados a dar a conocer, de primera mano, trabajo de investigación puntera reciente a los alumnos.

Se ofertan un total de 13 asignaturas optativas de otros másteres y una de ellas propia del máster en Ciencia y Tecnología Informática, de las que el alumno tiene que elegir. Para este conjunto de asignaturas, se definen 3 itinerarios formativos, que permiten orientar al alumno en la consecución de un conjunto de competencias homogéneas, aunque no obstante se permite que un alumno no siga un determinado itinerario de forma que obtenga una formación más multidisciplinar. Estos itinerarios son:

Inteligencia artificial.
Ingeniería del software.
Sistemas distribuidos, multimedia y seguros.

El Trabajo Fin de Máster de 18 créditos, consistirá en la elaboración de un trabajo de investigación en alguna de las áreas tratadas en el plan de estudios y su presentación pública ante un tribunal. El trabajo fin de máster no tiene asociada una plantilla de profesores predeterminada, sino que cada trabajo será dirigido por uno o varios profesores doctores del Departamento de Informática.

Además de las competencias definidas en el apartado 3, que todos los estudiantes que cursen el máster deben alcanzar, es establecen otras competencias que se pueden adquirir adicionalmente al cursar las distintas materias optativas del máster. Estas competencias solo serán adquiridas por aquellos alumnos que cursen las correspondientes materias optativas. En el apartado Observaciones de cada materia se incluyen las competencias adicionales a adquirir.

b) Planificación y gestión de la movilidad de estudiantes propios y de acogida

En este momento no existen acuerdos específicos de movilidad para este Máster, sin perjuicio de que en el futuro puedan establecerse algunos acuerdos concretos, que se irán incorporando a la memoria en la medida en que se vayan firmando, que ayuden incluso al desarrollo futuro de acuerdos de dobles titulaciones que se adjuntarán igualmente a la presente memoria. La acreditada presencia internacional de nuestra Universidad contribuirá a la consecución de este objetivo. Conviene recordar que la Universidad Carlos III

de Madrid mantiene Convenios de Intercambio de estudiantes con más de 200 Universidades en 30 países. A su vez, nuestra Universidad es miembro de prestigiosas Organizaciones Internacionales como la Asociación Universitaria Iberoamericana de Postgrado (AUIP), CINDA (Centro Interuniversitario de Desarrollo) y la Red Iberoamericana de Estudios de Postgrado (REDIBEP). Una parte importante de los estudiantes matriculados en los másteres universitarios de la Universidad Carlos III son estudiantes internacionales.

En caso de que se formalicen dichos acuerdos, la dirección del programa junto con la Comisión Académica del Máster serán los encargados de asegurar la adecuación de los convenios de movilidad con los objetivos del título. Bajo la supervisión de la Dirección del Máster existirá un coordinador y tutor de los estudios en programas de movilidad que orientará los contratos de estudios y realizará el seguimiento de los cambios y del cumplimiento de los mismos. Asimismo, las asignaturas incluidas en los contratos de estudios autorizadas por el tutor serán objeto de reconocimiento académico incluyéndose en el expediente del alumno. De igual manera, los estudiantes de másteres universitarios pueden participar en el programa *Erasmus placement* reconociéndose la estancia de prácticas en su expediente académico con el carácter previsto en el plan de estudios o como formación complementaria.

c) Procedimientos de coordinación docente horizontal y vertical del plan de estudios

MECANISMOS DE COORDINACIÓN DOCENTE

La coordinación docente del **Máster Universitario en Ciencia y Tecnología Informática** es responsabilidad del Director del Máster. Corresponde al Director las siguientes actividades:

- Presidir la Comisión Académica de la titulación.
- Vigilar la calidad docente de la titulación.
- Procurar la actualización del plan de estudios para garantizar su adecuación a las necesidades sociales.
- Promover la orientación profesional de los estudiantes.
- Coordinar la elaboración de la Memoria Académica de Titulación.

La Universidad Carlos III de Madrid dispone de un Sistema de Garantía Interna de la Calidad (SGIC). Dicho sistema ha sido diseñado por la Universidad conforme a los criterios y directrices recogidas en los documentos "Directrices, definición y documentación de Sistemas de Garantía Interna de

Calidad de la formación universitaria" y "Guía de Evaluación del diseño del Sistema de Garantía Interna de Calidad de la formación universitaria" proporcionados por la ANECA (Programa AUDIT convocatoria 2007/08). Este diseño está formalmente establecido y es públicamente disponible. La ANECA emitió en febrero de 2009 una valoración POSITIVA del diseño del SGIC-UC3M. Este diseño se ha implantado por primera vez en el curso 2008/09.

Dentro del SGIC de la Universidad Carlos III de Madrid, la Comisión Académica de la Titulación, está definida como el órgano que realiza el seguimiento, analiza, revisa, evalúa la calidad de la titulación y las necesidades de mejora y aprueba la Memoria Académica de Titulación.

La Comisión Académica del **Máster Universitario en Ciencia y Tecnología Informática** estará formada por el Director del Máster, que preside sus reuniones y por representantes de los Departamentos que imparten docencia en la titulación, así como por los alumnos, siendo preferente la participación del delegado de la titulación electo en cada momento, y en su defecto o por ausencia, cualquier otro alumno de la titulación, así como por algún representante del personal de administración y servicios vinculado con la titulación siempre que sea posible.

La Comisión Académica del Máster tendrá las siguientes responsabilidades:

- Supervisar los criterios aplicados en el proceso de selección de los estudiantes que serán admitidos en el Máster.
- Supervisar el correcto cumplimiento de los objetivos académicos.
- Gestionar todos los aspectos de transferencia y reconocimiento de créditos de acuerdo con la normativa de la Universidad.
- Y en general, gestionar y resolver todos los aspectos asociados con el correcto funcionamiento del Máster.
- Recoger, evaluar y gestionar las necesidades y propuestas de los alumnos, docentes y resto de miembros implicados en el proceso de enseñanza-aprendizaje en relación con la titulación.

Además, la Comisión Académica del Máster velará por la integración de las enseñanzas, intentando identificar y promover sinergias entre asignaturas, así como haciendo lo propio con sistemas de coordinación que garanticen evitar el solapamiento entre asignaturas y las lagunas en las mismas.

5.2 Estructura del plan de estudios

El plan de estudios se compone de 30 créditos ECTS obligatorios, 12 créditos ECTS de asignaturas optativas y 18 créditos ECTS de Trabajo Fin de Máster, lo cual representa un total de 60 créditos.

En la siguiente tabla de indican las asignaturas que conforman el plan de estudios:

	ORG <i>A</i>	ANIZACIÓN TEMPORAL DEL MÁSTER U	INIVERS		O EN CI itorias	ENCIA	Y TECNOLOGÍA INFORMÁTICA: asign	aturas	
Curso	Ctr	ASIGNATURA	Tipo	ECTS	Curso	Ctr	ASIGNATURA	Tipo	ECTS
1	1	Seminarios: Métodos de Investigación	ОВ	3	1	2	Trabajo fin de Máster	TFM OB	18
1	A*	Seminarios: Temas Emergentes	ОВ	6	1	2	Sistemas Paralelos y Distribuidos	ОВ	3
1	1	Inteligencia Artificial de Inspiración Biológica	ОВ	3	1	2	Ciberseguridad y Privacidad	ОВ	3
1	1	Planificación Automática	ОВ	3	1	2	Procesamiento del lenguaje natural con Aprendizaje	ОВ	3
1	1	Digitalización de Ingeniería de Sistemas complejos. 3ECTS.	ОВ	3	1	2	Informática centrada en el humano	ОВ	3
1	1	OPTATIVAS	ОР	5	1	2	OPTATIVAS	ОР	8
1	1	Lean Startup	ОР	6	1	2	Simulación de Robots	ОР	3
1	1	Datos masivos y encadenados	ОР	3	1	2	Percepción 3D	ОР	3
1	1	Sistemas de ciberseguridad	ОР	6	1	2	Software para internet de las cosas.	ОР	6
1	1	Computación de altas prestaciones	ОР	6	1	2	Aplicaciones avanzadas de la IA	ОР	6
1	1	Robótica	ОР	6	1	2	Calidad del Software	ОР	6
					1	2	Introducción a la Computación Cuántica	ОР	3

A continuación, se incluye la lista de asignaturas optativas de las que se parte, esta lista es revisable cada año para poder ampliar la oferta de acuerdo con las cambiantes necesidades del entorno.

ORGA	NIZA	CIÓN TEMPORAL DEL MÁSTER UNIVE	RSITAR	IO EN	ı C	CIENCIA	Y TEC	NOLOGÍA INFORMÁTICA: asignatura	s optat	ivas
Curso	Ctr	ASIGNATURA	Tipo	ECTS		Curso	Ctr	ASIGNATURA	Tipo	ECTS
1	1	Lean Startup	ОР	6		1	2	Simulación de Robots	ОР	3
1	1	Datos masivos y encadenados	ОР	3		1	2	Percepción 3D	ОР	3
1	1	Sistemas de ciberseguridad	ОР	6		1	2	Software para internet de las cosas.	ОР	6

1	1	Computación de altas prestaciones	ОР	6	1	2	Aplicaciones avanzadas de la IA	ОР	6
1	1	Robótica	ОР	6	1	2	Calidad del Software	ОР	6
					1	2	Introducción a la Computación Cuántica	ОР	3

Antes de presentar las fichas de las distintas materias que conforman el plan de estudios se van a indicar, de forma codificada, las distintas actividades formativas del plan de estudios, las metodologías docentes utilizadas y los sistemas de evaluación del plan de estudios.

A	ACTIVIDADES FORMATIVAS DEL PLAN DE ESTUDIOS REFERIDAS A MATERIAS
AF1	Clases teórico prácticas
AF2	Prácticas de laboratorio
AF3	Tutorías
AF4	Trabajo en grupo
AF5	Trabajo individual del estudiante
AF6	Pruebas de evaluación (examen)

N	IETODOLOGÍAS DOCENTES FORMATIVAS DEL PLAN REFERIDAS A MATERIAS
MD1	Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y
	se proporciona la bibliografía para complementar el aprendizaje de los alumnos.
MD2	Lectura crítica de textos recomendados por el profesor de la asignatura: Artículos de prensa, informes, manuales y/o artículos académicos, bien para su posterior discusión en clase, bien para ampliar y consolidar los conocimientos de la asignatura.
MD3	Resolución de casos prácticos, problemas, etc planteados por el profesor de manera individual o en grupo
MD4	Exposición y discusión en clase, bajo la moderación del profesor de temas relacionados con el contenido de la materia, así como de casos prácticos
MD5	Elaboración de trabajos e informes de manera individual o en grupo
MD6	Exposición en clase sobre un texto o artículo de investigación recomendado por el profesor

MD7	Realización de tutorías individuales o en grupo

9	SISTEMAS DE EVALUACIÓN DEL PLAN DE ESTUDIOS REFERIDOS A MATERIAS
SE1	Participación en clase
SE2	Trabajos individuales o en grupo realizados durante el curso
SE3	Exposición en clase de trabajos realizados durante el curso
SE4	Examen final
SE5	Exposición y defensa de la memoria TFM

Las competencias básicas, generales y específicas (descritas en el apartado 3) de la titulación de Máster Universitario en Ciencia y Tecnología Informática se distribuyen en los módulos tal como se recoge en la siguiente tabla.

		T/	ABLA I	DE CO	MPETE	NCIAS	POR M	IATER	RIAS		
	MATERIAS										
COMPETENCIAS	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	
CB6		Х	Х	X	Х	X	Х	X	Х	Х	
CB7			Х	Х	Х	Х	Х	Х		Х	
CB8	Х	Х			Х	Х	Х		Х	Х	
CB9	Х		Х	Х	Х	Х	Х	Х	Х	Х	
CB10	Х	Х	Х	Х	Х	Х	Х	Х		Х	
CG1	Х		Х	Х	Х		Х	Х	Х	Х	
CG2	Х			Х	Х		Х	Х	Х	Х	
CG3	Х	Х	Х	Х	Х	Х	Х	Х		Х	
CG4	Х	Х	Х	Х	Х	Х		Х	Х	Х	
CG5								Х		Х	
CG6	Х		Х	Х		Х	Х	Х		Х	
CE1	Х			Х	Х			Х		Х	
CE2	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
CE3	Х	Х		Х			Х	Х		Х	
CE4	Х								Х		

Seminarios: métodos de investigación

Número de créditos ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)
3	Obligatoria

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por una sola asignatura denominada con el mismo nombre que la materia, Seminarios: Métodos de Investigación

Competencias que el estudiante adquiere con esta materia

Competencias básicas: CB8, CB9, CB10

Competencias generales: CG1, CG2, CG3, CG4, CG6 Competencias específicas: CE1, CE2, CE3, CE4

Resultados de aprendizaje que adquiere el estudiante

Tras el estudio de esta materia el estudiante habrá adquirido habilidades que le permitirán generar:

- razonamiento crítico
- análisis de resultados científicos
- síntesis de resultados científicos analizados
- conocimientos para llevar a cabo con rigor una experimentación en el área de la Ingeniería Informática
- conocimientos sobre búsquedas de recursos digitales
- conocimientos sobre prácticas de ética de la investigación

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clases teórico prácticas	24	100%
AF3	Tutorías	8	100%
AF5	Trabajo individual del estudiante	58	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD3, MD4, MD5

Cod sistema	Sistema de evaluación	Ponderación	Ponderación
evaluación		mínima	máxima
evaluacion			

SE2	Trabajos individuales o en grupo realizados durante el curso	40	80	
SE3	Exposición en clase de un trabajo realizado durante el curso	20	60	

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Seminarios: métodos de investigación	3	1	obligatorio	Castellano/ingles

Breve descripción de contenidos

Se organizarán distintas actividades a lo largo de la materia que permitan a los estudiantes del máster adquirir las capacidades que les permitan demostrar que han alcanzado los resultados de aprendizaje antes mencionados.

Lenguas en que se impartirá la materia

Castellano/ Inglés

Observaciones

Seminarios: Temas emergentes

Número de	e créditos	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin	de
ECTS		máster/etc.)	
6		Obligatoria	

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por una asignatura con el mismo nombre que tiene carácter anual

Competencias que el estudiante adquiere con esta materia

Competencias básicas: CB6, CB8, CB10 Competencias generales: CG3, CG4 Competencias específicas: CE2, CE3

Resultados de aprendizaje que adquiere el estudiante

- Adquirir conocimientos sobre trabajos de investigación no cubiertos en las asignaturas.
- Capacidad de análisis crítico de las propuestas del ponente.
- Capacidad para continuar estudiando de un modo autónomo.

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clases teórica prácticas	36	20%
AF5	Trabajo individual del estudiante	144	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD3, MD4, MD5

Sistemas de evaluación y calificación. Indicar su ponderación máxima y mínima

Cod sistema evaluación	Sistema de evaluación	Ponderación mínima	Ponderación máxima
SE1	Participación en clase	20	60
SE2	Trabajos individuales o en grupo realizados durante el curso	40	80

Asignaturas de la materia

	Asignatura	Créditos	Cuatrim	Carácter	Idioma
-	Seminarios	6	ANUAL	Obligatoria	Inglés/
					Castellano

Breve descripción de contenidos

A largo del curso se ofertarán una serie de seminarios, impartidos por profesores de otras
instituciones, en las que el ponente presentará un tema de investigación concreto, relacionado con
las distintas asignaturas ofertadas en el máster.
Lenguas en que se impartirá la materia
Inglés/castellano
Observaciones

Inteligencia Artificial de inspiración Biológica

Número de créditos ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)
3	Obligatoria

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por una asignatura con el mismo nombre que se imparte en el primer cuatrimestre.

Competencias que el estudiante adquiere con esta materia

Competencias básicas: CB6, CB7, CB9, CB10 Competencias generales: CG1, CG3, CG4, CG6

Competencias específicas: CE2

Resultados de aprendizaje que adquiere el estudiante

- Conocer los nuevos enfoques en Inteligencia Artificial que se inspiran en estructuras y procesos biológicos auto-organizados
- Comprender los fundamentos teóricos de las técnicas de resolución de problemas de inspiración biológica.
- Conocer las diferencias entre las diferentes técnicas, así como sus ventajas y limitaciones.
- Identificar los dominios en los que el uso de estas técnicas puede ofrecer soluciones interesantes e innovadoras.
- Capacidad para aplicar las técnicas estudiadas en la resolución de problemas complejos.
- Comprender y analizar de manera crítica artículos científicos de la disciplina.
- Conocer las publicaciones científicas más relevantes relacionadas con la temática de la materia.
- Capacidad para realizar comunicaciones orales.

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clases teórico prácticas	24	100%
AF2	Tutorías	8	100%
AF3	Trabajo individual del estudiante	58	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD4, MD5, MD6

Cod sistema evaluación	Sistema de evaluación	Ponderación mínima	Ponderación máxima
SE3	Exposición en clase de un trabajo teórico, realizado individualmente o en grupo, relacionado con técnicas bio-inspiradas	20%	50%
SE2	Trabajo individual sobre la aplicación práctica, de las técnicas abordadas durante el curso	40%	60%
SE1	Participación en clase	5%	10%

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Inteligencia Artificial Bio-inspirada	3	1	Obligatoria	Castellano

Breve descripción de contenidos

- Fundamentos biológicos. Descripción de los sistemas biológicos, que se utilizan como base de inspiración, para el desarrollo de los modelos de Inteligencia Artificial que se estudian en el cuso. El código genético y la Selección Natural, microorganismos, organismos sociales y sus propiedades emergentes
- Sistemas evolutivos. Introducción a la computación evolutiva, descripción de las técnicas principales, características principales, ventajas y limitaciones
- Sistemas neuronales. Fundamentos de redes neuronales y los diferentes tipos de aprendizaje, modelos avanzados y su aplicación a problemas multidisciplinares
- Sistemas celulares. Descripción de computación celular y sus componentes fundamentales, relación con los sistemas complejos, modelización y análisis de sistemas celulares
- Sistemas colectivos. Tipos de sistemas colectivos, propiedades emergentes, evolución de sistemas colectivos, inspiración biológica de dichos sistemas
- Sistemas colectivos en robótica. Cooperación de robots, realización de tareas de manera colectiva y descentralizada, perspectivas futuras de aplicabilidad de enjambres de robots
- Otros sistemas. Sistemas de inspiración de organismos microscópicos, otros tipos de inspiración biológica, su utilidad, su ámbito de aplicabilidad, características y limitaciones

Lenguas en que se	impartirá la materia
-------------------	----------------------

_			
Cas	tel	Ian	\cap

Observaciones

Planificación Automática

Número de créditos ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)
3	Obligatoria

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por una asignatura con el mismo nombre que se imparte en el primer cuatrimestre

Competencias que el estudiante adquiere con esta materia

Competencias básicas: CB6, CB7, CB9, CB10

Competencias generales: CG1, CG2, CG3, CG4, CG6

Competencias específicas: CE1, CE2, CE3

Resultados de aprendizaje que adquiere el estudiante

- Conocimiento y capacidad de análisis de las técnicas automáticas de resolución de problemas basadas en planificación automática
- Conocimiento de las características de cada técnica y el tipo de dominios y aplicaciones para las que es apropiada
- Uso de al menos una herramienta que implemente cada uno de los grandes tipos de técnicas para resolver problemas concretos
- Capacidad para realizar presentaciones orales
- Conocimiento de posibles temas abiertos para la realización de tesis doctorales

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clases teórico/prácticas	24	100%
AF3	Tutorías	8	100%
AF5	Trabajo individual del estudiante	58	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD3, MD5, MD6

I minima i maxima	Cod sistema	Sistema de evaluación	Ponderación	Ponderación
evaluación	evaluación		mínima	máxima

SE2	Trabajos individuales o en grupo realizados durante el curso	20%	70%	
SE3	Exposición en clase de trabajos realizados durante el curso	30%	80%	
SE4	Examen final	0	50%	

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Planificación Automática	3	1	Obligatoria	Castellano/Inglés

Breve descripción de contenidos

- Introducción
- Planificación clásica: espacios de estados y espacios de planes parciales
- Planificación neoclásica: basada en técnicas de grafos de planes y planificación SAT
- Planificación heurística
- Técnicas actuales de planificación
- Aprendizaje automático para planificación y conocimiento de control
- Otros enfoques: planificación con tiempo y recursos, planificación con incertidumbre, planificación jerárquica...

Lenguas en que se impartirá la materia

Se impartirá en castellano aunque los materiales se proporcionarán en inglés

Observaciones

Digitalización de Ingeniería de Sistemas complejos.

Número de ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin máster/etc.)	de
3	Obligatoria	

Duración y ubicación temporal dentro del plan de estudios

Primer Cuatrimestre

Competencias que el estudiante adquiere con esta materia

Competencias Básicas: CB6, CB7, CB8, CB9, CB10 Competencias Genéricas: CG1, CG2, CG3, CG4

Competencias Específicas: CE1, CE2

Resultados de aprendizaje que adquiere el estudiante

- Digitalization of the lifecycle: processes and methods
- · Automation of the engineering process: technology and tools
- Toolchain collaboration
- Multicultural aspects of the digital engineering process

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clases teórico prácticas	24	100%
AF3	Tutorías	8	100%
AF5	Trabajo individual del estudiante	58	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD4, MD5, MD6

Sistemas de evaluación y calificación. Indicar su ponderación máxima y mínima

El trabajo de presentación y debate definido anteriormente será considerado la base de la evaluación del alumno. Dicho trabajo deberá estar acompañado de una memoria que lo avale. La evaluación se realizará sobre la memoria y la presentación.

Cod sistema	Cide we do end only	Ponderación	Ponderación
evaluación	Sistema de evaluación	mínima	máxima

SE2	Trabajos individuales o en grupo realizados durante el curso.	20%	80%	
SE3	Exposición en clase de un trabajo realizado durante el curso	20%	80%	

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Digitalización de Ingeniería de Sistemas complejos.	3	1	Obligatoria	Castellano/inglés

Breve descripción de contenidos

- Digitalization of the lifecycle: processes and methods
- Automation of the engineering process: technology and tools
- Toolchain collaboration
- Multicultural aspects of the digital engineering process

Lenguas en que se impartirá la materia

Castellano/Inglés

Observaciones

Las Clases Teóricas serán en inglés o español, dependiendo de la lengua mayoritaria de los alumnos asistentes.

Los materiales de la asignatura serán todos en inglés.

Los Trabajos a realizar y su exposición podrán ser en español o en inglés, pero la ponderación de la valoración será mayor si es en inglés.

Otras competencias a adquirir:

 CA13: Dominar los conceptos de reutilización y recuperación de conocimiento, así como su directa aplicación a la Ingeniería del Software.

Sistemas Paralelos y Distribuidos

Número de créditos ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)
3	Obligatoria

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por una asignatura con el mismo nombre que se imparte en el primer cuatrimestre

Competencias que el estudiante adquiere con esta materia

Competencias básicas: CB6, CB7, CB8, CB9, CB10

Competencias generales: CG3, CG4, CG6

Competencias específicas: CE2

Resultados de aprendizaje que adquiere el estudiante

- Capacidad para modelar y evaluar un sistema distribuido y paralelo.
- Capacidad para diseñar aplicaciones distribuidas y paralelas.
- Conocer los principales aspectos de diseño de un sistema distribuido y paralelo.
- Conocer y aplicar técnicas de simulación para simular sistemas distribuidos y paralelos.
- Capacidad para analizar de forma crítica un documento técnico o publicación científica.
- Saber transmitir los resultados de una investigación científica.

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clases teórico prácticas	24	100%
AF3	Tutorías	8	100%
AF5	Trabajo individual del estudiante	58	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD3, MD6

Cod sistema	Sistema de evaluación	Davidson 26	Devidence of Co.
evaluación		Ponderación	Ponderación

		mínima	máxima	
SE2	Trabajos individuales realizados durante el curso	50	80	
SE3	Exposición en clase de un trabajo realizado durante el curso	20	50	

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Sistemas Paralelos y Distribuidos	3	1	Obligatoria	castellano

Breve descripción de contenidos

- Introducción a los sistemas distribuidos y paralelos
- Modelos de sistemas y algoritmos distribuidos
- Tolerancia a fallos
- Técnicas de simulación en sistemas distribuidos y paralelos
- Computación de altas prestaciones
- Sistemas distribuidos y paralelos de gran escala
- Sistemas de ficheros distribuidos y paralelos

Lenguas en que se impartirá la materia

Castellano

Observaciones

Otras competencias a adquirir:

- CA26: Capacidad para diseñar y evaluar sistemas basados en computación distribuida.
- CA27: Capacidad para modelar, diseñar, definir y organizar la arquitectura de un sistema distribuido, y poder aplicar conocimientos avanzados de sistemas y aplicaciones distribuidas.
- CA30: Capacidad para comprender y saber evaluar la arquitectura de un sistema de computación de altas prestaciones.

Ciberseguridad y Privacidad

Número de créditos ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)
3	Obligatoria

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por una asignatura con el mismo nombre que se imparte en el primer cuatrimestre.

Competencias que el estudiante adquiere con esta materia

- Conocer los principios y el estado del arte de la ciberseguridad.
- Conocer los principios y estado del arte de la privacidad.
- Conocer y aplicar técnicas que garanticen la privacidad en el manejo de datos.
- Conocer los principios de anonimización y saber aplicar técnicas de desanonimización.
- Conocer y manejar las principales tecnologías para la protección de la privacidad.
- Capacidad para analizar de forma crítica un documento técnico o publicación científica.
- Saber transmitir los resultados de una investigación científica.

Resultados de aprendizaje que adquiere el estudiante

Competencias básicas: CB6, CB7, CB8, CB9, CB10. Competencias generales: CG1, CG2, CG3, CG6.

Competencias específicas: CE2, CE3.

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clase teórico practicas	24	100%
AF3	Tutorías	8	100%
AF5	Trabajo individual	58	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD3, MD4, MD5, MD7

Cod sistema evaluación	Sistema de evaluación	Ponderación mínima	Ponderación máxima	
------------------------------	-----------------------	-----------------------	-----------------------	--

SE2	Trabajos individuales o en grupo realizados durante el curso	60	80	
SE4	Examen final	20	40	

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Ciberseguridad y Privacidad	3	1	Obligatoria	Castellano

Breve descripción de contenidos

- Introducción a la ciberseguridad
- Estado del arte de la privacidad
- Criptografía: capacidades y limitaciones
- Recopilación y análisis de datos: datos personales y privacidad
- Anonimato y desanonimización
- Tecnologías de la privacidad

Lenguas en que se impartirá la materia

Castellano

Observaciones

Se recomienda que el alumno haya cursado previamente alguna asignatura relacionada con la seguridad en las tecnologías de la información y las comunicaciones.

Otras competencias a adquirir:

- CA31: Conocer y analizar los algoritmos criptográficos, y evaluar sus vulnerabilidades.
- CA32: Comprender y analizar los principios y métodos de protección de la información y los mecanismos de gestión de claves.

Procesamiento de Lenguaje Natural con Aprendizaje Profundo

Número de créditos ECTS Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)			
3	Obligatoria		

Duración y ubicación temporal dentro del plan de estudios

Esta materia esta formada por una asignatura con el mismo nombre que se imparte en el segundo cuatrimestre.

Competencias que el estudiante adquiere con esta materia

Competencias básicas: CB6, CB7, CB9, CB10

Competencias Generales: CG1, CG2, CG3, CG4, CG5, CG6

Competencias específicas: CE1, CE2, CE3

Resultados de aprendizaje que adquiere el estudiante

- Conocer los principales fundamentos para el diseño y desarrollo de sistemas software para el procesamiento computacional del lenguaje humano
- Conocer las principales tareas y aplicaciones de Procesamiento de Lenguaje Natural (PLN).
- Conocer los principales enfoques utilizados para el desarrollo de sistemas de PLN.
- Estudiar y conocer los principales modelos de aprendizaje profundo y su aplicación a distintas aplicaciones de Procesamiento de Lenguaje Natural (PLN).
- Implementación de al menos un modelo de aprendizaje profundo para cada una de las aplicaciones de PLN estudiadas en el curso.
- Determinar posibles temas de investigación para la realización de tesis doctorales.

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clases teórico prácticas	24	100%
AF3	Tutorías	8	100%
AF5	Trabajo individual del estudiante	58	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD3, MD4, MD5

ión a	
----------	--

evaluación			
SE2	Trabajos individuales o en grupo realizados durante el curso	40	80
SE3	Exposición en clase de trabajos realizados durante el curso	10	20

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Procesamiento de Lenguaje Natural con Aprendizaje Profundo	3	2	0	Castellano

Breve descripción de contenidos

- Introducción
- Tareas básicas de PLN.
- Clasificación de textos.
- Reconocimiento de Entidades.
- Extracción de Relaciones.
- Simplificación de textos.
- Generación de Resúmenes.

Lenguas en que se impartirá la materia

Castellano

Observaciones

Todo el material es en inglés.

Otras competencias a adquirir:

 CA7: Capacidad para aplicar métodos matemáticos, estadísticos y de Inteligencia Artificial para modelar, diseñar y desarrollar aplicaciones, servicios, sistemas inteligentes y sistemas basados en el conocimiento.

Informática centrada en el humano/Human Centered Informatics

Número de créditos ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)
3	Obligatoria

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por una asignatura con el mismo nombre que se imparte en el segundo cuatrimestre.

Competencias que el estudiante adquiere con esta materia

Competencias básicas: CB6, CB8, CB9 Competencias generales: CG1, CG2, CG4; Competencias específicas: CE2, CE4

Resultados de aprendizaje que adquiere el estudiante

La materia está orientada a formar a los alumnos en el conocimiento de distintas técnicas avanzadas de desarrollo de sistemas con un paradigma centrado en las personas. En este curso se mostrará una panorámica de lo que es la informática centrada en las personas, la interacción persona ordenador, la ingeniería de la usabilidad, objetivos en la interacción (colaboración, diversión, ...) los paradigmas de interacción avanzados (computación ubicua, realidad mixta, web, ...), los métodos y las técnicas de análisis de requisitos, de diseño y, sobre todo, de evaluación.

Además, se considera como objetivo primordial fomentar en los alumnos un espíritu crítico y analítico, que les permita determinar tener una visión de los campos de investigación en el área de la informática centrada en las personas.

En concreto se pretende que los alumnos adquieran conocimientos que les permitan

- Comprender los principios y bases científicas de la interacción persona-ordenador.
- Comprender y analizar los problemas de interacción que pueden plantearse en el desarrollo de sistemas centrados en las personas.
- Conocer y utilizar diversas métodos y técnicas de evaluación de sistemas interactivos.
- Analizar y diseñar mecanismos de interacción.

Detectar nuevos campos de investigación en el área de la informática centrada en las personas.

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF1	Clases teórico-prácticas	24	100%
AF3	Tutorías	8	100%
AF5	Trabajo individual del estudiante	58	0%

Metodologías docentes que se utilizarán en esta materia

MD1, MD2, MD4, MD5, MD6

Sistemas de evaluación y calificación. Indicar su ponderación máxima y mínima

Cod sistema evaluación	Sistema de evaluación	Ponderación mínima	Ponderación máxima
SE2	Trabajos individuales o en grupo realizados durante el curso	40	50
SE1	Participación en clase	5	10
SE3	Exposición en clase de un trabajo realizado durante el curso	30	50

Asignaturas de la materia

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Informática centrada en el humano	3	2	Obligatoria	Castellano/inglés

Breve descripción de contenidos

- Informática centrada en el humano
- Interacción perdona-ordenador
- Paradigmas de interacción
- Interacción avanzada: computación tangible y vestible, computación ubicua, interfaces inteligentes, realidad mixta
- Análisis y diseño de la interacción
- Evaluación de sistemas interactivos

Lenguas en que se impartirá la materia

Castellano/inglés dependiendo del perfil de los alumnos

Observaciones

TEMAS AVANZADOS EN INFORMÁTICA

Número de créditos ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)
12	Optativo

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por un conjunto de asignaturas optativas de las que el estudiante tendrá que cursar 12 ECTS. Dichos créditos serán escogidos por el estudiante de entre un conjunto de asignaturas ofertadas. Se parte de una lista inicial de asignaturas, pero no se trata de una lista cerrada sino que podrá ser revisada anualmente y el estudiante siempre puede cursar otras asignaturas de másteres universitarios de la Universidad Carlos III, ligados al área de la informática y consistentes con el programa docente ofertado por el máster en ciencia y tecnología informática, previa validación de la comisión académica o la dirección del máster.

Competencias que el estudiante adquiere con esta materia

Resultados de aprendizaje que adquiere el estudiante

Se indican a continuación para cada asignatura optativa.

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante	
AF1	Clases teórico-prácticas	84	100%	
AF3	Tutorías	12	100%	
AF5	Trabajo individual del estudiante	264	0%	

Metodologías docentes que se utilizarán en esta materia

Sistemas de evaluación y calificación. Indicar su ponderación máxima y mínima n y calificación. Indicar su ponderación máxima y mínima

SE2 0%-100% y SE3 0-100% y SE4 0%-100%

Asignaturas de la materia

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Lean Startup	6	1	OP	Castellano/inglés
Datos masivos y encadenados	3	1	OP	Castellano
Sistemas de ciberseguridad	6	1	ОР	Castellano
Computación de altas prestaciones	6	1	OP	Castellano
Robótica	6	1	ОР	Castellano
Simulación de Robots	3	2	ОР	Castellano
Percepción 3D	3	2	OP	Castellano
Software para internet de las cosas	6	2	OP	Castellano
Aplicaciones avanzadas de la IA	6	2	ОР	Castellano
Calidad del Software	6	2	OP	Castellano
Introducción a la Computación Cuántica	3	2	ОР	Castellano

Asignatura	Breve descripción de contenidos	Resultados de Aprendizaje
Lean Startup	 Startups Lean Startup Process Business Model Canvas Value Proposition Design 	Conocer el concepto de startup y cóm generar modelos de negoci innovadores de éxito para empresa digitales.
Datos masivos y encadenados	Aplicación de bases de datos para Big Data. Integración de fuentes de datos y el concepto de Big Data. Arquitecturas distribuidas para integración y análisis de datos. Principales aplicaciones. Tecnologías de bases de datos encadenados. Origen de Blockchain (cadenas de bloques). Funcionamiento de cadenas de bloques. Algoritmo de consenso. Tipos de Blockchain. Principales aplicaciones.	Diseñar, construir y explotar almacenamiento de grandes volúmene de datos orientados al análisis masivo d datos (Big Data). Concebir, diseñar y operar solucione basadas en tecnologías de dato encadenados (blockchain) aplicándolo a problemas empresariales.

Sistemas de ciberseguridad	1 Introducción a la ciberseguridad: Conceptos básicos. Ciberamenazas 2 Ciberseguridad en redes: Introducción a la ciberseguridad en redes. Cortafuegos y segmentación de redes. Sistemas de detección y prevención de ataques. Sistemas de Gestión de Eventos e Información de Seguridad (SIEM) 3 Ciberseguridad en sistemas: Introducción a la ciberseguridad en sistemas. Mecanismos y herramientas de análisis. Identificación de vulnerabilidades de software. Identificación de vulnerabilidades en la web	Conocer las normas y estándares nacionales, europeos e internacionales relativos a la seguridad del software. Comprender los principales conceptos de ciberseguridad y los elementos que participan en un sistema de ciberseguridad en redes de computadores y en sistemas informáticos. Conocer los sistemas detección y prevención de ataques así como los sistemas de gestión de eventos e información de seguridad. Utilizar herramientas de análisis en ciberseguridad e identificar vulnerabilidades de software y de la web.
Computación de altas prestaciones	1. Principios de la computación de altas prestaciones: Definición de los sistemas de altas prestaciones. Definición de clúster de cómputo. 2. Diseño y análisis de aplicaciones de altas prestaciones: Modelado de aplicaciones paralelas. Metodología de paralelización de aplicaciones. 3. Paradigmas de programación paralela: paso de mensaje, memoria compartida, paralelismo de datos:Paso de mensajes (MPI). Programación en sistemas de memoria compartida (OpenMP). Paralelismo en sistemas heterogéneos GPGPU (CUDA). 4. Paralelismo de datos mediante técnicas Big Data: Paradigma de programación Map-Reduce. Sistemas de almacenamiento para sistemas intensivos en datos (HDFS y HBASE). Apache Hadoop. Apache Spark	Comprender y aplicar conocimientos avanzados de computación de altas prestaciones y métodos numéricos o computacionales a problemas de ciencia e ingeniería. Paralelizar una aplicación a partir de su versión secuencial para entornos multicore de memoria compartida, entornos de clúster y entornos de computación heterogénea usando aceleradores.
Robótica	Comprender el concepto de robot y ser consciente de sus capacidades y limitaciones. Diseñar sistemas de procesamiento masivo de datos incluyendo técnicas de visión artificial, localización y modelado del entorno. Aplicar técnicas de control en tiempo real a la robótica. Aplicar técnicas de aprendizaje automático al diseño y construcción de robots.	Comprender el concepto de robot y ser consciente de sus capacidades y limitaciones.
Simulación de Robots	Introducción a simuladores de robots Simulador de robots: Gazebo Simulador de robots	Comprender el papel de la simulación empotrada en robots.
Percepción 3D	Introducción. Sensores de percepción 3D para robótica. Técnicas de procesamiento de nubes de puntos Aplicaciones de percepción 3D	Aprender los instrumentos que dan soporte a la visión 3D.

Software para internet	1 Introducción a la Ingeniería del Software Para IoT: Áreas de Aplicación y Aplicaciones prácticas usando IoT.	Conocer las áreas de aplicación para internet de las cosas (IoT), los principios aplicables al diseño de software y las
de las cosas.	Principios del Diseño de Sistemas Software para IoT. Arquitecturas de Referencia en IoT 2 Tecnologías claves para IoT: Dispositivos Internet of Things, Extremo a Extremo. Comunicaciones en IoT. Securización en IoT. Arquitectura de Datos para IoT. 3 Proceso de desarrollo y despliegue para IoT: Frameworks. Proceso de desarrollo para IoT. Despliegue para IoT. Integración y Entrega Continua.	arquitecturas de referencia. Conocer e integrar las tecnologías clave para su utilización en soluciones para internet de las cosas (IoT) incluyendo dispositivos, comunicaciones, securización y arquitecturas de datos. Diseñar, construir y desplegar software específico para internet de las cosas (IoT) aplicando métodos modernos de Ingeniería del Software.
Aplicaciones avanzadas de la IA	 1 IA en la industria automotriz 2 IA en el campo de la salud 3. IA en el mundo empresarial 4. IA en la Ingeniería 5 Ética e IA 6 Otras áreas de aplicación de la IA 	Integrar la aplicación de las técnicas de inteligencia artificial dentro de aplicaciones en diversos sectores con especial atención a la automoción, la salud, el mundo empresarial o la ingeniería. Conocer las principales áreas en las que aplican métodos y técnicas de Inteligencia Artificial y ser capaz de aplicarlos a problemas comunes en dichos dominios.
Calidad del Software	1 ITIL orientado a la Certificación en ITIL Foundations: Introducción a ISO 20000, COBIT y CMMI en lo relativo a su relación con ITIL y la complementariedad de las mismas. Fases de ITIL v3. Procesos de las 5 fases de ITIL v3. 2 Ingeniería de Sistemas e Ingeniería del Software: Introducción a INCOSE y a ISO/IEC/IEEE 15288:2002. Procesos y ciclo de vida. Introducción a ISO/IEC/IEEE 12207:2017. Procesos y Ciclo de vida. Introducción a la alineación existente entre ISO 12207 e ISO 15288. 3 Calidad del producto software: Introducción a la norma ISO/IEC 25000 - SQuaRE (System and Software Quality Requirements and Evaluation). Modelo de calidad: sistema/software y datos. Medición de la calidad. Requisitos de la calidad. Evaluación de la calidad.	Conocer las principales alternativas en cuanto a calidad de proceso de desarrollo de software y calidad de producto software. Conocer las principales normas y estándares a nivel nacional e internacional en el ámbito de la calidad del software y de tecnologías de la información. Gestionar la calidad del software a lo largo de un proyecto de desarrollo incluyendo la ingeniería de requisitos y la validación y verificación.
Introducción a la Computación Cuántica	 Formalismo cuántico: axiomas de la mecánica cuántica; aplicaciones básicas: teorema nocloning, teleportación, codificación superdensa y algoritmo de Deutsch-Jozsa Modelo de circuito en computación cuántica: puertas cuánticas; universalidad Algoritmos cuánticos: búsqueda (algoritmo de Grover); factorización (transformada de Fourier cuántica y algoritmo de Shor) 	Comprender el papel de la computación cuántica en el universo informático.

Castellano/inglés

Observaciones

Se incluye la lista de asignaturas optativas de las que se parte, el listado no es cerrado y pueden cursarse otras asignaturas de otros másteres oficiales ligadas al contenido del programa, esas otras asignaturas serán supervisadas y confirmadas cada año por la comisión académica del máster.

Trabajo Fin de Máster

Número de créditos ECTS	Carácter de la materia (obligatoria/optativa/mixto/trabajo fin de máster/etc.)			
18	Trabajo fin de máster			

Duración y ubicación temporal dentro del plan de estudios

Esta materia está compuesta por una asignatura con el mismo nombre que se imparte en el segundo cuatrimestre

Competencias que el estudiante adquiere con esta materia

Competencias básicas: CB6, CB7, CB8, CB9, CB10

Competencias generales: CG1, CG2, CG3, CG4, CG5, CG6

Competencias específicas: CE1, CE2, CE3

Resultados de aprendizaje que adquiere el estudiante

El Trabajo Fin de Máster consiste en la elaboración de un trabajo de investigación en alguna de las áreas tratadas en el plan de estudios y su presentación pública ante un tribunal. Los principales resultados de aprendizaje son:

- Capacidad para aplicar los conocimientos adquiridos y su capacidad para la resolución de problemas.
- Capacidad para integrar conocimientos.
- Capacidad para comprender y aplicar métodos y técnicas de investigación en el ámbito de la Ingeniería Informática.
- Capacidad para concebir, diseñar o crear, poner en práctica y adoptar un proceso sustancial de investigación.
- Capacidad para elaborar un documento o memoria técnica de investigación.
- Saber transmitir de un modo claro y sin ambigüedades a un público especializado o no, resultados procedentes de la investigación científica.

Actividades formativas de la materia indicando su contenido en horas y % de presencialidad

Cod. actividad	Actividad	Horas	% presencialidad del estudiante
AF3	Tutorías	15	100%
AF5	Trabajo individual del estudiante	525	0%

Metodologías docentes que se utilizarán en esta materia

MD2, MD5, MD3

Cod sistema evaluación	Sistema de evaluación	Ponderación mínima	Ponderación máxima	
SE2	Trabajos individuales realizados durante el curso. Memoria final del Trabajo Fin de Máster	50	80	
SE5	Exposición y defensa de la memoria TFM	20	50	

Asignatura	Créditos	Cuatrim	Carácter	Idioma
Trabajo Fin de Máster	18	2	TFM	Castellano/inglés

Breve descripción de contenidos

El Trabajo Fin de Máster consiste en la elaboración de un trabajo de investigación en alguna de las áreas tratadas en el plan de estudios y su presentación pública ante un tribunal. El alumno deberá hacer una revisión del estado del arte para el problema planteado, un análisis crítico de diferentes alternativas encontradas en el estado del arte y una descripción y evaluación de la solución desarrollada por el estudiante. El alumno deberá escribir una memoria del trabajo realizado que podrá ser redactada en castellano o en inglés y defenderá públicamente ante un tribunal los principales resultados obtenidos en su trabajo fin de máster.

Lenguas en que se impartirá la materia

Castellano/inglés

Observaciones