
CLARISSE: a middleware for data-staging
coordination and control on large-scale HPC

platforms.
Florin Isaila and Jesus Carretero

University Carlos III (Spain)
Email: {fisaila, jcarrete}@arcos.inf.uc3m.es

Rob Ross
Argonne National Laboratory (USA)

Email: rross@mcs.anl.gov

Abstract—On current large-scale HPC platforms the data path
from compute nodes to final storage passes through several
networks interconnecting a distributed hierarchy of nodes serving
as compute nodes, I/O nodes, and file system servers. Although
applications compete for resources at various system levels,
the current system software offers no mechanisms for globally
coordinating the data flow for attaining optimal resource usage
and for reacting to overload or interference.

In this paper we describe CLARISSE, a middleware designed
to enhance data-staging coordination and control in the HPC
software storage I/O stack. CLARISSE exposes the parallel data
flows to a higher-level hierarchy of controllers, thereby opening
up the possibility of developing novel cross-layer optimizations,
based on the run-time information. To the best of our knowledge,
CLARISSE is the first middleware that decouples the policy, con-
trol, and data layers of the software I/O stack in order to simplify
the task of globally coordinating the data staging on large-scale
HPC platforms. To demonstrate how CLARISSE can be used
for performance enhancement, we present two case studies: an
elastic load-aware collective I/O and a cross-application parallel
I/O scheduling policy. The evaluation illustrates how coordination
can bring a significant performance benefit with low overheads
by adapting to load conditions and interference.

Index Terms—HPC; storage; data staging; parallel I/O; col-
lective I/O; I/O scheduling;

I. INTRODUCTION

The past several years have brought a significant growth
in the amount of data generated in scientific domains such
as astrophysics, climate, high-energy physics, biology, and
medicine. Managing this data profligacy on large-scale HPC
platforms requires a sustained effort in both hardware and
software development. One of the most critical challenges is
understanding the limitations of the storage I/O software stack
in petascale systems and proposing novel solutions to address
these limitations for larger data sets and larger scale [1], [2],
[3].

The software I/O stack employed by many simulations on
todays HPC platforms, shown in Figure 1, consists of scientific
libraries (e.g., HDF5, parallel NetCDF), middleware (e.g.,
MPI-IO), I/O forwarding (e.g., IOFSL), and file systems (e.g.,
GPFS, Lustre). Scaling this I/O stack is challenging because
the functionality involved in storage access is distributed over
several types of nodes (compute nodes, I/O nodes, file system
servers). Additionally, the current uncoordinated development
model of independently applying optimizations at each layer

of the system software I/O software stack is not expected to
scale to the new levels of concurrency, storage hierarchy, and
capacity [3]. Radically new approaches to reforming the I/O
software stack are needed in order to enable holistic system
software optimizations that can address cross-cutting issues
such as performance, resiliency, and power.

The main contribution of this paper is CLARISSE, a middle-
ware designed to improve the scalability of the software I/O
stack on large-scale HPC infrastructures. To the best of our
knowledge, CLARISSE is the first middleware that decouples
the policy, control, and data layers of software I/O stack in
order to simplify the task of globally coordinating the data
staging on large-scale HPC platforms. CLARISSE exposes
the parallel data flows from a supercomputer to a higher-level
hierarchy of controllers, thereby opening up the possibility of
developing novel cross-layer optimizations, based on the run-
time information. In comparison, today’s MPI-IO implemen-
tation does not use information such as network and server
load in order to adapt the data paths for avoiding congestion
or ensuring resilience. This paper proposes a novel model
for building global control that can be used for designing
system-wide data staging optimizations. To demonstrate how
CLARISSE can be used for performance enhancement, we
present two novel implementations of an elastic load-aware
collective I/O and of a parallel I/O scheduling policy.

The remainder of the paper is organized as follows. Section
II presents an overview of CLARISSE. Section III discusses
the design and implementation of the CLARISSE middleware.
Section IV presents two CLARISSE applications: an elastic

Fig. 1. Mapping of the I/O software stack (right-hand side) on the architecture
of current large-scale HPC systems (left-hand side).



Fig. 2. Data path of two applications in current large-scale platforms.

collective I/O implementation and parallel I/O scheduling.
Section V presents the experimental results. Section VI com-
pares and contrasts CLARISSE with related work. Section
VII presents our conclusions and discusses current and future
work.

II. OVERVIEW

On current large-scale HPC platforms such as Blue Gene/Q
or most Cray systems, the data path from compute nodes to
final storage passes through several networks interconnecting a
distributed hierarchy of nodes serving as compute nodes, I/O
nodes, and file system servers. Figure 2 shows two parallel
applications writing and reading from the external storage.
Despite the fact that these applications compete for resources
at various system levels, the current system software offers no
mechanisms for globally coordinating the data flow for optimal
resource usage and for reacting to overload or interference.

The main goal of the CLARISSE middleware is to offer run-
time cross-layer coordination of data staging on large-scale
HPC platforms. In order to achieve this goal,, the middleware
functionality is separated into a control plane, data plane,
and policy layer in a fashion similar to that in the software
defined networking approach [4], as shown in Figure 3. The
data plane includes mechanisms for transferring the data from
the compute nodes to the storage nodes either collectively or
independently and allows the building of data flows such as
those in Figure 2. The control backplane offers mechanisms
for coordinating and controlling the data staging based on a
publish/subscribe API. Using control backplane mechanisms,
one can implement various policies for controlling the data
plane for aspects such as elastic collective I/O, parallel I/O
scheduling, load balancing, resilience, and routing.

Fig. 3. Separation of data, control, and policy in CLARISSE:

Fig. 4. Control backplane example. Node controllers reside on all compute
nodes. Each application has an application controller. A global controller is
used for systemwide coordination.

III. DESIGN AND IMPLEMENTATION

This section discusses the design and implementation of
the CLARISSE middleware. The section is organized in three
parts corresponding to data, control, and policy layers.

A. Data plane

The CLARISSE data plane is responsible for staging data
between applications and storage or between applications.
Applications can access data using a put/get interface or an
MPI-IO interface. If the data source/destination is storage,
the current design assumes the existence of a global file
name space. For interapplication communication, data can be
exchanged through a virtual name space. The two applications
need only to agree on the name of the data set to be exchanged.
The data exchange is performed through a shared data space
(e.g., virtual file), which CLARISSE data plane maps on the
data model of each application through MPI data types or
offset-length lists.

For both put/get and MPI-IO interfaces, there are indepen-
dent and collective I/O versions of the data access functions.
The main difference between the two is that collective I/O
involves the merging of small requests from several processes
into larger ones in order to reduce I/O contention. The merging
process is performed at processes called aggregators. Since
high-performance scalable I/O for either network transfer or
file system access involves some form of aggregation, we will
focus in the remainder of this section on the collective I/O
operations.

CLARISSE currently offers two collective I/O implemen-
tations: view-based I/O (see Figure 5a) and list-based I/O

Fig. 5. Collective I/O implementations in CLARISSE: (a) view-based
collective I/O; (b) list-based collective I/O.



(see Figure 5b). View-based I/O was described in detail
elsewhere [6]. In summary a file is mapped on processes
based on views, which are contiguous windows mapped on
noncontiguous file regions. The views are either sent once to
the aggregators and saved there for future use or sent with
each access request. View-based I/O works well for small and
moderately fragmented files. List-based I/O is a new collective
I/O implementation designed for highly fragmented files, for
addressing the high memory footprint of view-based I/O in
these cases. Instead of transferring full views, list-based I/O
optimally packs in a network buffer the maximum amount
of data and pairs of offset-lengths representing the mapping
of the access patterns to file. Unlike views, the offset-lengths
pairs are ephemeral: they are discarded by the aggregators as
soon as the data are aggregated into the collective buffers.

The data access operations described above can work in the
absence of a control plane, for instance in the same way as the
collective I/O operations from any existing MPI distribution.
However, the main strength of our approach and difference
from other work is that CLARISSE operations are controllable
through the actions of the control plane, which is the subject
of the next section. This approach opens up the possibility
of implementing a large range of policies addressing, for
instance, load and failure conditions at various places in the
data-staging flow.

B. Control plane

The CLARISSE control backplane acts as a coordination
framework designed to support the global improvement of key
aspects of data staging, including load balancing, I/O schedul-
ing, and resilience. The control backplane is constructed from
a set of minimally invasive control agents. A control agent
runs on every node and monitors the occurrence of predefined
or dynamically defined events and reactively executes the
associated actions.

The control plane offers the following classical publish/-
subscribe API [7] that can be used for implementing control
policies:

• subscribe(event_properties) registers for an
event, which could either trigger a callback or be placed
in an event queue on the calling node.

• publish(event_type, event_data) publishes
an event, which causes the event data to be forwarded
to the subscribed nodes.

• event_data wait(event_type) blocks waiting
for the event to be received and returns the event data.

• int test(event_type) nonblockingly tests
whether the event has been received and, if it has been
received, returns the event data, otherwise NULL.

Figure 4 shows an example of a hierarchical control in-
frastructure, which has been implemented for this work. In
this example a control agent can play the role of a node
controller, an application controller, or a global controller.
Control policies are implemented in an event-driven manner
by the interaction among these types of controllers. The node
controller is responsible for the node-level events associated

with application or server processes (e.g., server load). An
application controller is in charge of monitoring the nodes
where the application is running and detect events related
to any individual node (e.g., server node failure). A global
controller monitors running applications and can take system-
level decisions (e.g., I/O scheduling).

C. Policy layer

In this section we describe the steps involved in the devel-
opment of a CLARISSE policy. These steps do not necessary
have to be applied in the order described below. Rather, the
implementation should be iteratively refined until a satisfactory
result is obtained. In the next section we show how these steps
are implemented for two policy examples.

First, the developer of a control policy has to identify
relevant control variables, a set of variables to be used for
implementing the policy. These can be existing variables that
control the data flow or new variables. For instance, a file
can be declustered over a set of servers represented by a
server map. An existing server map can be chosen as a control
variable if the control policy acts upon it and thereby changes
the data flow. The identifier of a loaded server dynamically
discovered is an example of a new variable introduced for
implementing a policy.

Second, the developer has to decide on the proper place for
inserting control points in the logic of the data staging imple-
mentation. A codesign of data staging and control algorithms
can produce more efficient implementations. However, one can
also add control to any existing data staging implementation.

Third, the developer needs to identify the distributed entities
involved in the control algorithm. For instance, these can
be the controller processes (e.g., node, application or global
controllers), an external performance or fault monitor, or the
processes of an end-user application.

The control orchestration is implemented through control
actions using the control plane API described in Section III-B
or other operations of the entities involved in control. The other
operations can be, for example, communication operations
specific to the platform where CLARISSE is deployed. The
control actions from this step are placed only at the control
points. Examples of control actions include waiting for an
event to occur, querying the system state, and generating an
event.

D. Status

A prototype of the CLARISSE middleware has been im-
plemented in approximately 25K lines of C code 1. In the
current version the communication is MPI-based. The data
plane collective I/O methods from Figure 5, view-based and
list-based collective I/O can be used though put/get and MPI-
IO interfaces. The control plane from Figure 4 has been
implemented as as a publish/subscribe layer in MPI. The
policies described in the following sections also have been
fully implemented, and their evaluation is discussed in Section
V.

1The code is available for download at https://bitbucket.org/fisaila/clarisse.



Elastic Parallel
Collective I/O I/O Scheduling

Control Server map Waiting queue
variables Epoch

Loaded server
Control Before data shuffle Before data shuffle
points After data shuffle
Entities Application processes Application processes

Performance monitor Controllers
Controllers

Orchestration Figure 6 Figure 7
TABLE I

STEPS INVOLVED IN THE DEVELOPMENT OF TWO CLARISSE
APPLICATIONS.

IV. CLARISSE POLICIES

This section illustrates the types of policies that CLARISSE
enables. We discuss two policies: an elastic collective I/O and
a parallel I/O scheduling policy. Table 1 shows the information
relevant to the steps involved in developing a new CLARISSE
policy as discussed in Section III-C. The details are discussed
below.

A. Elastic collective I/O

The current collective I/O implementation from ROMIO,
two-phase I/O [8] does not leverage information such as load
or faults in order to adapt to run-time conditions and improve
performance or avoid failures. In this section we present the
implementation of a collective I/O operation that adapts to
the load conditions at data aggregation servers (aggregators)
in order to improve the performance. In particular, this im-
plementation leverages CLARISSE control for dynamically
removing a loaded server from the data path and continuing
operation.

The implementation of elastic collective I/O uses three
control variables. The first variable is the server map, the
list of servers that are used for aggregating small file system
requests into larger ones (as discussed in Section III-A). A
newly defined variable is used for identifying a currently
loaded server. A newly defined epoch is the time interval in
which the server map value does not change. For instance,
after the removal of a server from the system map has been
disseminated to all application processes, a new epoch starts.

We use one control point for each collective I/O operation
called by an application process before the data shuffling starts
(see Figure 5).

Three entities are involved in control: end-user application
processes calling the collective I/O operations, a performance

Fig. 6. Elastic collective I/O protocol. The green rectangles represent control
points.

monitor providing run-time information about system load,
and the controllers managing the run-time event handling.

Figure 6 shows the control orchestration used by the elastic
collective I/O method. For simplicity we do not show the
controllers that are in charge of providing the publish/subscribe
infrastructure. Our implementation assumes the existence of a
large-scale system on-line performance monitor that detects a
loaded server based on some criteria and publishes a message
about it. The implementation of such a performance monitor
is a complex task in itself [9] and is outside the scope of our
work.

Our implementation dynamically removes a loaded server
from a data-staging flow. Beginning on one node, the controller
subscribes to SLOW_IO_SERVER events (step 1). Whenever
the performance monitor detects a slow server, it publishes a
SLOW_IO_SERVER event (step 2). When reaching a control
point, the subscribed application process checks for the arrival
of a SLOW_IO_SERVER event (step 3). Subsequently, a
broadcast operation with the semantics of an MPI blocking
collective operation [10] is used for broadcasting the loaded
server (or none) and for enforcing synchronization between
the processes participating in the collective I/O (step 4). This
operation ensures that either none or all processes receive
the information about a loaded server. If there is a loaded
server (step 5), all processes finish pending independent I/O
operations (step 6), update the server map by removing the
loaded server (step 7), and start a new epoch (step 8).

The policy discussed in this section dynamically removes
one server from the server map. A similar protocol can be used
for adding a new server to the server map. A slightly more
complex protocol can be used for adding/removing several
servers in the same control iteration. A similar approach can
be used for removing a server that failed. However, additional
actions need to be taken into consideration for ensuring the
correctness of data such as restarting of collective operations
that are in progress. The implementation of these type of more
complex policies is the subject of future work.

Fig. 7. FCFS parallel I/O scheduling. The green rectangles represent control
points.



B. Parallel I/O scheduling

The flexible implementation of parallel I/O scheduling poli-
cies between applications for data accesses to shared resources
is also a capability that is notably missing from the current
software I/O stack, despite the fact that the benefits of such ca-
pability have been studied and empirically demonstrated [11].
CLARISSE enables the implementation of a large spectrum
of parallel I/O scheduling policies. In this paper, we present
an example of a simple policy implementation for collective
I/O operations. An extensive study of parallel I/O scheduling
policies is beyond the scope of this paper.

In this example we address a simple instance of the parallel
I/O scheduling in Figure 4. Assume that two parallel appli-
cations are concurrently issuing collective I/O requests that
involve the same set of aggregators at the same time. The
lack of a parallel I/O scheduling strategy may cause server
contention and substantially impact the performance of the
parallel applications.

The control policy for first-come first-served (FCFS) re-
quires a waiting queue as a control variable. The control
points are before and after the data shuffling. The control
policy involves application processes and controllers. The
control orchestration is shown in Figure 7. A global controller
subscribes to START_IO and FINISH_IO events (steps 1
and 2), and the application controllers subscribe to GRANT_IO
events (step 3). Application 1 publishes a START_IO event
containing a system-wide unique application identifier (step
4) and blocks waiting for a GRANT_IO event (step 5). Appli-
cation 2 does the same (steps 6 and 7). The global scheduler
first receives a START_IO event from application 1 and, given
that no other application is currently scheduled, publishes
a GRANT_IO event for the application identifier (step 8).
Subsequently, the global scheduler receives the START_IO
event from application 2 and saves it in the waiting queue,
given that the application 1 has been scheduled. The appli-
cation controller receives the GRANT_IO event, executes the
collective I/O operation, and publishes a FINISH_IO event
(step 9). The global controller receives this event and schedules
the next application by retrieving the next application from
the waiting queue and publishing a GRANT_IO event (step
10). Application 2 receives this event, schedules the shuffle
operation, and publishes a FINISH_IO event (step 11).

This FCFS implementation schedules the access to aggre-
gators. More complex time-sharing and space-sharing policies
and multistage scheduling of aggregators and file system
access are the subject of future work.

V. EXPERIMENTAL RESULTS

In this section we present an evaluation of the two
CLARISSE policies proposed in this paper: elastic collective
I/O and parallel I/O scheduling. We target the following
questions: What is the performance benefit of these policies
compared with the case when they are not used? What is the
cost incurred by CLARISSE? Do the benefits outweigh the
costs?

This section first describes the experimental setup and then
presents the results.

A. Experimental setup

The experiments for our study are run on the Vesta BG/Qsu-
percomputer at Argonne National Laboratory. Vesta has 2,048
compute nodes (4 racks of 512 compute nodes each) with
PowerPC A2 cores (1.6 GHz, 16 cores/node, and 16 GB
RAM). The compute nodes are interconnected in a 5D torus
network and do not have persistent storage. Each compute
node has 11 network links of 2 GB/s and can concurrently
receive/send an aggregate bandwidth of 44 GB/s. While 10 of
these links are used by the torus interconnect, the 11th link
provides connection to the I/O nodes. On Vesta, a set of 32
compute nodes (known as a pset) has one I/O node acting
as an I/O proxy. For every I/O node there are two network
links of 2 GB/s toward two distinct compute nodes acting
as bridges. Therefore, for every 128-node partition, there are
nb = 4× 2 = 8 bridges. The I/O traffic from compute nodes
passes through these bridge nodes on the way to the I/O node.
The I/O nodes are connected to the storage servers through
Quad-data-rate (QDR) InfiniBand links. The file system on
Vesta is GPFS 3.5. The data are stored on 40 NSD SATA
drives with a 250 MB/s maximum throughput per disk; the
block size is 8 MB. The file system blocks are distributed by
GPFS in a round-robin fashion over several NSDs, with the
goal of balancing the space utilization of all system NSDs.
The I/O nodes are file system clients, and the size of the client
cache on each I/O node is 4 GB. The MPI distribution used
in all experiments is MPICH 3.1.4.

In all experiments all the clients write to a shared file
using list-based collective I/O (described in Section III-A).
The ratio of the number of aggregators to number of clients
was chosen based on the default ratio in the MPI-IO driver for
GPFS, roughly 16:1 with the constraint of having a power of
2 number of total cores. The aggregators were placed on the
Blue Gene/Q topology on the nodes close to the bridge nodes
with a placement policy similar to the one from the MPI-
IO driver for GPFS: first, aggregators were placed on nodes
one hop away from the bridge nodes, followed by nodes two-
hops away from the bridge nodes, and so on until the desired
number of aggregators was reached. For making a reasonable
use of resources, we always used the maximum number of
cores of a batch scheduler allocation. For instance, for 128
nodes, we run an experiment with 128 x 16 = 2048 processes,
of which 128 were aggregators; that is, 2048 - 128 = 1920
processes were dedicated to the applications. This explains
the lack of powers of 2 in the number of processes in the
experiments.

In our evaluation we used a self-crafted version of the
IOR benchmark and two application kernels (VPICIO and
VORPALIO). The IOR benchmark is one of the most popular
parallel I/O benchmarks [12]. Our self-crafted version of the
IOR benchmark (which we will call S-IOR in the remainder
of the paper) generates the same pattern as the original IOR
benchmark with the following differences meant to better



No. of Client No. of Server Access Size File
Processes Processes /Process Size

1920 128 16 MB 300 GB
3840 256 8 MB 300 GB
7680 512 4 MB 300 GB

15760 1024 2 MB 300 GB
TABLE II

BENCHMARK PARAMETERS.

reproduce the behavior of a significant class of real appli-
cations: it allows insertion of a pseudo-computation between
two consecutive I/O operations and execution of a number of
phases with consecutive I/O operations instead of repetitions of
the same operation. For S-IOR we used the MPI-IO interface.

VPICIO and VORPALIO are two I/O kernels extracted
from real scalable applications at LBL [13]. Both of these
I/O kernels perform storage I/O through the H5Part library,
which can store and access time-varying, multivariate data sets
through the HDF5 library. For collective I/O the HDF5 library
employs MPI-IO. In this evaluation we use the implementation
of MPI-IO on top of CLARISSE.

VPICIO is an I/O kernel of VPIC, a scalable 3D electro-
magnetic relativistic kinetic plasma simulation developed by
Los Alamos National Laboratory [14]. VPICIO receives as
parameters the number of particles and a file name, generates
a 1D array of particles, and writes them to a file. VPICIO was
extended by us to write the array over a number of time steps.

VORPALIO is an I/O kernel of VORPAL, a parallel code
simulating the dynamics of electromagnetic systems and plas-
mas [15]. The relevant parameters of VORPALIO are 3D block
dimensions (x, y, and z), a 3D decomposition over p processes
(px, py , and pz where px × py × pz = p), and the number of
time steps. In each step VORPALIO creates a 3D partition of
blocks and writes it to a file.

B. Elastic collective I/O

For the elastic collective I/O implementation we first evalu-
ate the S-IOR benchmark in more detail and then present the
results for VPICIO and VOPRALIO.

S-IOR is run as one application in the model shown in
Figure 4 with four configurations shown in Table 2. The total
data written to the file system in all cases is 30 GB/operation
(strong scaling), that is, 300 GB when 10 consecutive file write
operations were used.

Before we evaluate the benefits and costs of elastic collec-
tive I/O, we present two motivating experiments that answer
the following two questions. What is the impact of the load of
one aggregating server on the file access performance? What
is the impact of removing an arbitrary number of servers on
the file access performance?

In the first experiment we inject a delay in response rep-
resenting a server load ranging from 0 µs to 512 µs to one
server. Figure 8 shows the results. For values up to 8 µs the
impact is not noticeable because the performance is dominated
by other I/O operations. Starting at 16 µs, the load significantly
impacts the performance. For 512 µs delay the performance
degradation is as large as 4x.

In the second experiment we evaluate the impact of running
S-IOR with fewer aggregating servers. We varied the number

Fig. 8. Server load injection.

of servers for the four cases and plotted the results in Figure
9. In all cases the removal of a small number of servers
does not have a significant impact on performance. For larger
number of client processes the performance even improves
with a smaller number of aggregating servers. This apparently
paradoxical result is explained by the increased contention on
the file system that is caused by a large number of servers.
This suggests that the default parameter used in the MPI-IO
driver for GPFS is not ideal for the experimental platform.

The empirical answers to the previously posed questions
suggest that the load on a single aggregating server can
significantly impact performance (not surprisingly, according
to Amdahl’s law), but that removing the loaded server can
restore the performance. The next question is whether this
dynamic removal can be performed with low overhead. Figure
10 shows an evaluation of the dynamic removal of a loaded
server for 3,840 and 15,360 processes per application (i.e.,
using the policy described in Section III-C).

In this experiment we run 10 consecutive write operations
writing a total of 300 GB to a shared file. A permanent load
of 512 µs is injected into each file write operation of exactly
one aggregating server right before the third operation. In the
upper timeline of each graph we note that the aggregate write
performance significantly deteriorates and remains low for the
lifetime of the benchmark. In the lower timeline of each graph,
after paying a high cost of performing the third access, the
detection of load triggers the server removal control protocol,
which removes the server during the fourth operation and starts
a new epoch with fewer servers with the fifth operation. The
control protocol is fully overlapped with the fourth operation,
and the application perceives significantly better performance

Fig. 9. Impact of server removal on aggregate write throughput.



Fig. 10. Dynamic server removal results.
only starting from the fifth operations.

The left hand side of Figure 11 displays the speedup values
for individual operations after the loaded server has been
removed and the speedup of the overall benchmark time
including the operations with the loaded server. The dynamic
server removal offers a large speedup for the individual
operations ranging on average between 359% and 473%. The
overall benchmark speedup ranges between 188% and 220%.

We compute the cost incurred by the elastic collective I/O
policy for one operation as the ratio of the maximum over all
processes of the time spent performing control operations (at
a control point) and the maximum over all the processes of
write operation time. The right hand side of Figure 11 shows
the results in percentages. In all cases the mean cost is under
0.3% of the total operation time. We consider this cost to be
low compared with the performance benefits that such a policy
brings.

These results demonstrate the need for dynamic load detec-
tion and avoidance policies in the software I/O stack, given
the dramatic impact that they can have on the performance of
a single loaded node in the system.

1) Application kernels: We repeated the load injection/de-
tection experiment with VPICIO and VORPAL kernels using a
server load of 512 µs per operation in a weak scaling scenario.
VPICIO was run for 131,032 particles per process and 10
steps, which for p processes generated total data-set sizes of
p×5 MB (i.e., 75 GB for 15,360 processes). For VORPALIO,
we used block dimensions of sizes x = 50, y = 50, and
z = 30; decompositions of sizes px = p/15, py = 5, and
pz = 3; and 10 time steps, which for p processes generated
total data set sizes of p × 17 MB (i.e., 257 GB for 15,360

Fig. 11. Left-hand side: Speedup of elastic collective I/O for S-IOR. Right-
hand side: CLARISSE overhead for elastic collective I/O in percentage from
the write operation.

Fig. 12. Left-hand side: Speedup of elastic collective I/O for VPICIO. Right-
hand side: CLARISSE overhead for elastic collective I/O in percentage from
the write operation.

processes).
The left-hand sides of Figures 12 and 13 show the speedups

obtained by the elastic collective I/O implementation over the
version that continues with the loaded server. Both average
write speedup and whole application speedup are shown. In
all cases the improvement is substantial. For VPICIO there is
a one order of magnitude improvement in the collective write
operations for 7,680 and 15,360 processes. This improvement
is due to the dynamic removal of the loaded server during the
fourth iteration of the application. In the right-hand sides of
the figures we can see that the policy cost is under 0.2% of
the write operation time. As in the case of S-IOR, this cost is
low compared with the benefit that this policy brings.

C. Parallel I/O scheduling

In this experiment we evaluate the performance of the FCFS
parallel I/O scheduling described in Section III-C. In the
evaluation we use three metrics: the interference factor I , the
scheduling cost factor C, and the scheduling overhead. The
interference factor was defined in [11] as

I =
Tnosched
Talone

(1)

, where Tnosched is the total time of the storage I/O, when
applications are running concurrently without scheduling and
Talone is the time of the application running alone. We define
the scheduling cost factor C in similar fashion:

C =
Tsched
Talone

(2)

, where Tsched is the time the storage I/O requires when
scheduling is used. Intuitively, the interference factor reflects
the degree of overlap in time of I/O operations when no
scheduling is performed. For no overlap the theoretical value
of I is 1. The scheduling cost factor C reflects the contribution
of two main components: the amount of waiting due to mutual
exclusion and the overhead of implementing the scheduling

Fig. 13. Left hand side: Speedup of elastic collective I/O for VORPALIO.
Right hand side: CLARISSE overhead for elastic collective I/O in percentage
from the write operation.



Fig. 14. Left-hand side: Speedup of FCFS parallel scheduling I/O for two
concurrent instances of S-IOR. Right-hand side: Interference and scheduling
cost factors.

algorithm in CLARISSE. Intuitively, the I/O scheduling im-
proves the performance if I > C.

We first evaluate four cases of two concurrent instances
of S-IOR, each running 960, 1,920, 3,840, and 7,680 client
processes. Each S-IOR instance has 10 phases alternating a
write operation to a shared file with a computation operation of
20 seconds, in a fashion similar to many scientific application
patterns. Each benchmark instance writes data to its own file.
Figure 16 shows the results for 960 and 3,840 clients. The
performance without I/O scheduling is depicted in the upper
part of each graph and the performance with FCFS scheduling
in the lower part.

When no I/O scheduling is employed, the contention at
servers significantly degrades the performance of write op-
erations. Figure 14 shows the speedup that can be obtained
though the FCFS policy for all four cases. The performance
of individual operations improves between 132% and 198%.
Overall the benchmark speedup is between 103% and 112%.
This value is not as large because it includes a large fraction
of computation, more than 82% in all cases. If we consider
only I/O, the speedup is between 127% and 190%.

To better understand the performance, in the right-hand side
of Figure 14 we plot the average over the two applications
of the interference factor I and scheduling cost factor C.
As expected, the speedup appears to be correlated with the
difference I − C. The more efficient is the scheduling, the
larger is the average write speedup. The values of C are
significantly lower than those of I , indicating that the I/O
scheduling is effective. This fact is confirmed by the obtained
speedup.

We estimated the scheduling overhead for operation in-
stances, which are chosen for scheduling without waiting. We
computed the overhead as a ratio of the time required for
scheduling over the total operation time. The results are plotted
in Figure 15. The mean overhead is less than 0.02%, which
is many orders of magnitude less than the total time, even
when it shows some variability. These results demonstrate the
potential beneficial impact that a simple I/O scheduling policy
can have on the file write performance at a low cost in the
presence of contention.

1) Application kernels: We evaluated the parallel I/O
scheduling with VORPALIO and VPICIO kernels in a
strong scaling experiment. VPICIO was run for 4,194,4304
/ 2,097,152 / 1,048,576 / 524,288 particles per process and
10 steps, which for each run of 960, 1,920, 3,840 and 7,680
processes generated a total data set size of 150 GB per
application. For VORPALIO, we used block dimensions of

sizes x = 256/(p/960), y = 64, and z = 32; decompositions
of sizes px = p/15, py = 5, and pz = 3; and 10 time steps,
which for p = 960, 1,920, 3,840 and 7,680 processes generated
a total data-set size of 112.5 GB per application.

We evaluated three scenarios: (1) two concurrent instances
of VPICIO, (2) two concurrent instances of VORPALIO, and
(3) two concurrent instances, one of VPICIO and one of
VORPALIO. The instances were all started at the same time.
Figures 17, 18, and 19 show the speedup for both average
write time and overall application.

In 9 of 12 cases parallel I/O scheduling brings a perfor-
mance benefit of upto 84% for average write time and upto
25% for the whole application. For VPICIO+VORPALIO,
however, there was practically no speedup for 960, 1920 and
3840 processes. To better understand the performance, on the
right-hand side of each figure we plot the average over the
two applications of the interference factor I and scheduling
cost C as we did in Section V-C for S-IOR. As expected, the
speedup appears to be correlated with the difference I − C.
A larger positive difference corresponds to a higher speedup,
and a small or negative difference corresponds to no speedup.
For VPICIO+VORPALIO and 960, 1,920, and 3,840 processes
the lack of speedup is due to a larger than usual scheduling
cost factor, which does not counterbalance the interference
cost. Based on these results, we analyzed the execution traces
and noted that for these cases the ratio of I/O times to
computation times was high: more than 1 for 960 processes
and between 0.5 and 1 for 1,920 and 3,840 processes. This
substantially increased the waiting time for scheduling and
therefore resulted in low or no speedup for these cases. The
overhead of scheduling excluding waiting is similar to the
one for S-IOR (the same operations are involved) and it is
not shown here. A more extensive analysis of this trade-off
between interference and I/O scheduling is a subject of future
work.

VI. RELATED WORK

This section discusses related work in three areas: HPC
software storage I/O stack, scalable on-line monitoring and
run-time systems, and in situ and in-transit computation.

A. HPC software storage I/O stack

In the past several years increasing efforts have been made
to improve the scalability and the performance of the HPC
storage I/O stack. The goal of the Fast Forward I/O and
Storage program [16] is to redesign the storage I/O stack for

Fig. 15. Overhead of FCFS parallel scheduling I/O for two concurrent
instances of S-IOR.



Fig. 16. FCFS parallel I/O scheduling. The blue bars correspond to write
time, and the red hashed bars correspond to waiting time.

addressing the scalability requirements of exaflop systems. In
turn, we target building cross-layer control abstractions that
could be used for global optimization of existing or future
I/O stacks. Our approach is close in spirit to IOFlow [5],
a software-defined storage architecture that uses a logically
centralized controller for managing the data flows between
virtual machines. Unlike our approach, IOFlow targets storage
in virtualized data centers and distributed applications with
different requirements and APIs from those of the HPC
platforms.

Most research in this area has been dedicated to improve
what we call the data plane of the HPC software storage
I/O stack. For instance, researchers have proposed several
collective I/O implementations [8], [17], [18]. In all these
approaches, however, the coordination is intrinsic; and none
of them are systemwide optimizations taking into account
external factors such as interference and system load.

A few studies advocate for the need for improving coordina-
tion in the HPC storage I/O stack. Song et al. [19] proposed
a coordination approach based on server-side scheduling of
one application at a time in order to reduce the completion
time while maintaining the server utilization and fairness.
Two recent studies [11], [20] address the growing impact
on performance of the interference of multiple applications

Fig. 17. Left-hand side: Speedup of FCFS parallel scheduling I/O for two
concurrent instances of VPICIO. Right-hand side: Interference and scheduling
cost factors.

Fig. 18. Left-hand side: Speedup of FCFS parallel scheduling I/O for
two concurrent instances of VORPALIO. Right-hand side: Interference and
scheduling cost factors.

Fig. 19. Left-hand side: Speedup of FCFS parallel scheduling I/O for con-
current instances of VPICIO and VORPALIO. Right-hand side: Interference
and scheduling cost factors.

accessing a shared file system by client-side scheduling of
application accesses to the file systems. CLARISSE can be
used to implement such one-level policies, while opening up
the space of implementing a much higher range of data-staging
coordination policies including multiple-level I/O scheduling.

B. Scalable on-line monitoring and run-time systems

Traditionally, the global monitoring of the HPC infrastruc-
tures has been done by system administrators. However, as the
HPC infrastructure scales are continuously growing, there is
an increasing need for scalable high-performance monitoring
libraries that can be used by system software and library
developers for implementing adaptive algorithms in the face
of increasing probability of congestion and failure. LDMS [9]
provides a distributed metric service that can be used for on-
line monitoring. However, LDMS is currently a research effort,
and this kind of library is not available on the current plat-
forms. The CIFTS infrastructure [21] provides a fault-tolerant
backplane for global dissemination of fault information. The
Argo [22] and Hobbes [23] projects investigate operating
systems and run times for future exascale systems. They both
use a global information bus for the dissemination of run-
time information about events such as faults or congestion to
a hierarchy of enclaves (logical partitions of the system into
groups of nodes). The CLARISSE project complements these
approaches by focusing on coordination of data staging.

C. In situ and in-transit computation

As shared file systems are currently reaching their scalabil-
ity limit under increasing parallelisms and data requirements,
in situ and in-transit locality exploitation has become key
for pushing the scalability beyond the current level. Aspects
currently addressed include data staging [24], in situ and in-
transit data analysis and visualization [25], [26], [27], publish-
subscribe paradigms for coupling large-scale analytics [28],
and flexible analytics placement tools [29]. These techniques
require coordination between the data staging and the data
consumers in the data path. In most of these approaches
the control is embedded in the frameworks, and designing
novel coordination approaches is complex. CLARISSE seeks
to alleviate this problem by separating control and data paths
and facilitating the development of novel coordination policies
based on the control backplane.

VII. CONCLUSIONS

In this paper we presented CLARISSE, a framework de-
signed to improve the data-staging coordination on scalable



HPC platforms. The CLARISSE design consists of data,
control, and policy layers. This approach offers a significant
degree of flexibility. The CLARISSE data plane offers inde-
pendent and collective I/O operations. The CLARISSE control
plane is generic and fully decoupled from the data plane.
Ideally, the control plane and data plane should be codesigned,
but CLARISSE allows the control data plane to be used with
any existing data plane. CLARISSE opens up a large space
of implementing various data-staging coordination policies
for cross-layer distributed coordination of the software I/O
stack. In this paper we presented two case studies, an elastic
collective I/O and a parallel I/O scheduling implementation.
We demonstrated empirically that CLARISSE can bring a sig-
nificant performance benefit at a low cost for elastic collective
I/O and parallel I/O scheduling.

We are currently investigating several research directions
based on the foundations presented in this paper. First, we plan
to design and implement adaptive policies for data aggregation
and staging targeting high-performance and high resource
utilization. In particular, we will extend the elastic collective
I/O policy to address more complex load patterns that occur
on HPC platforms. Second, we will actively research novel
parallel I/O scheduling policies that reduce the noise perceived
by the applications. In particular, we plan to look at policies
at various layers including aggregation, burst buffers, and file
systems. Third, we will investigate how CLARISSE can be
used to improve the resilience of the software I/O stack.
Fourth, CLARISSE offers proper mechanisms for supporting
the necessary coordination for data sharing and staging for
complex workflows of applications. We plan to explore how
these mechanisms can be applied in real scientific workflows
consisting of multiple simulations and combinations of sim-
ulation and analysis/visualization. Fifth, the CLARISSE run
time will highly benefit from an on-line scalable and high-
performance monitoring framework that offers a dynamic low-
latency view of a large-scale system, including fault notifica-
tion, aggregation of metrics, and congestion detection. Several
efforts in this direction are promising [9], [22], [23], and we
plan to capitalize on these in order to significantly improve
the scalability and performance of the software I/O stack on
future platforms.

REFERENCES

[1] R. Ross, G. Grider, E. Felix, M. Gary, S. Klasky, R. Oldfield, G. Ship-
man, and J. Wu, “Storage Systems and Input/Output to Support Extreme
Scale Science,” Department of Energy, Tech. Rep., 2015.

[2] F. Isaila, J. Garcia, J. Carretero, R. Ross, and D. Kimpe, “Making the
Case for Reforming the I/O Software Stack of Extreme-Scale Systems,”
Elsevier’s Journal Advances in Engineering Software, 2015.

[3] M. Bancroft, J. Bent, E. Felix, G. Grinder, J. Nunez, S. Poole, R. Ross,
E. Salmon, and L. Ward, “HEC File Systems and I/O Workshop
Document. http://institute.lanl.gov/hec-fsio/docs/.” Tech. Rep., 2011.

[4] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN,” Queue,
vol. 11, no. 12, p. 20, 2013.

[5] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “IOFlow: A Software-defined Storage
Architecture,” in Proceedings of the Twenty-Fourth ACM SOSP, ser.
SOSP ’13. New York, NY, USA: ACM, 2013, pp. 182–196.

[6] F. J. G. Blas, F. Isaila, D. E. Singh, and J. Carretero, “View-Based
Collective I/O for MPI-IO,” in 8th IEEE CCGrid 2008, 2008, pp. 409–
416.

[7] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[8] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving And Collective I/O In
ROMIO,” in Proceedings of FRONTIERS ’99. IEEE Computer Society,
1999, pp. 182–189.

[9] A. Agelastos and et al., “The Lightweight Distributed Metric Service:
A Scalable Infrastructure for Continuous Monitoring of Large Scale
Computing Systems and Applications,” in Proceedings of SC ’14, ser.
SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 154–165.

[10] “MPI: A message-passing interface standard,” Knoxville, TN, USA,
Tech. Rep., 1994.

[11] M. Dorier, G. Antoniu, R. B. Ross, D. Kimpe, and S. Ibrahim,
“CALCioM: Mitigating I/O Interference in HPC Systems through Cross-
Application Coordination,” in 28th IEEE IPDPS, Phoenix, AZ, 2014.

[12] H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting the
I/O Performance of HPC Applications Using a Parameterized Synthetic
Benchmark,” in Proceedings of SC ’08, 2008, pp. 42:1–42:12.

[13] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,
Q. Koziol, and M. Snir, “Taming Parallel I/O Complexity with Auto-
tuning,” in Proceedings of SC ’13, 2013, pp. 68:1–68:12.

[14] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan,
“Ultrahigh Performance Three-Dimensional Electromagnetic Relativistic
Kinetic Plasma Simulationa),” Physics of Plasmas, vol. 15, no. 5, p.
055703, May 2008.

[15] C. Nieter and J. R. Cary, “VORPAL: A Versatile Plasma Simulation
Code,” J. Comput. Phys., vol. 196, no. 2, pp. 448–473, May 2004.

[16] The Fast Forward Storage and I/O Program. Available at
https://wiki.hpdd.intel.com/.

[17] F. Isaila, G. Malpohl, V. Olaru, G. Szeder, and W. Tichy, “Integrating
Collective I/O and Cooperative Caching into the ‘Clusterfile’ Parallel
File System,” in Proceedings of ACM ICS, 2004, pp. 58–67.

[18] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett, “Server-
Directed Collective I/O in Panda,” in Proceedings of SC ’95, ser.
Supercomputing ’95. New York, NY, USA: ACM, 1995.

[19] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “Server-Side I/O
Coordination for Parallel File Systems,” in Proceedings of SC ’11, pp.
17:1–17:11.

[20] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC Applications Under Congestion,” in In
IPDPS 2015, 2015, pp. 1013–1022.

[21] R. Gupta, P. Beckman, B.-H. Park, E. Lusk, P. Hargrove, A. Geist,
D. Panda, A. Lumsdaine, and J. Dongarra, “CIFTS: A Coordinated
Infrastructure for Fault-Tolerant Systems,” 2014 43rd ICPP, pp. 237–
245, 2009.

[22] S. Perarnau et al., “Distributed Monitoring and Management of Exascale
Systems in the Argo Project,” in Distributed Applications and Interop-
erable Systems, 2015, pp. 173–178.

[23] R. Brightwell, R. Oldfield, A. B. Maccabe, and D. E. Bernholdt,
“Hobbes: Composition and Virtualization As the Foundations of an
Extreme-Scale OS/R,” in Proceedings of ROSS ’13, pp. 2:1–2:8.

[24] T. Jin, F. Zhang, Q. Sun, H. Bui, N. Podhorszki, S. Klasky, H. Kolla,
J. Chen, R. Hager, C. Chang, and M. Parashar, “Leveraging Deep Mem-
ory Hierarchies for Data Staging in Coupled Data Intensive Simulation
Workflows,” in IEEE Cluster 2014, 2014.

[25] M. Dreher and B. Raffin, “A Flexible Framework for Asynchronous
In Situ and In Transit Analytics for Scientific Simulations,” in 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Chicago, IL, USA, May 26-29, 2014, 2014, pp. 277–286.

[26] V. Vishwanath, M. Hereld, and M. E. Papka, “Toward Simulation-Time
Data Analysis and I/O Acceleration on Leadership-Class Systems.” in
LDAV, D. Rogers and C. T. Silva, Eds. IEEE, 2011, pp. 9–14.

[27] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, “Damaris:
How to Efficiently Leverage Multicore Parallelism to Achieve Scalable,
Jitter-free I/O,” in IEEE CLUSTER, 2012.

[28] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, “Flexpath: Type-Based Pub-
lish/Subscribe System for Large-Scale Science Analytics.” in CCGRID,
2014, pp. 246–255.

[29] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal,
T. Nguyen, J. Cao, H. Abbasi, S. Klasky, N. Podhorszki, and H. Yu,
“FlexIO: I/O Middleware for Location-Flexible Scientific Data Analyt-
ics,” in 27th IEEE IPDPS 2013, 2013, pp. 320–331.


