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Sl Introduction é

» Scientific applications (climate, genomics, high energy
physics, etc.) process increasingly larger data sets

» Future high scale supercomputers need to deal efficiently
with big data

» 1/O software stack needs to evolve in terms of
performance, programmability, resilience, energy
efficiency

» This talk will concentrate on performance
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= ® ® Current problems of storage I/O stack

e . Maps application abstractions
111111111111111111111 iigi-level o ey | onto storage abstractions (e.g.:
Compute nodes 1711117171777117171 HDFS5, ParalleINetCDF)
ﬂﬂﬂﬂﬂﬂﬂﬂ . Redu'ces the number of file system
/0 Middleware . calls by optimizations like collective
I/O (e.g.: MPI-10)
/O Forwarding ! | Offloads I/O functionality from
] compute nodes (e.g.: Mercury,
1/0 nodes U0oboobo IOFSL)
Parallel File Systems — | Offer a global name space and high
B performance storage access (e.g.:

Sstorage nodes  (JJUUU U GPFS, Lustre, PVFS)
- —— Block and storage object devices

Back-end storage Efffﬂ

» Long path from compute nodes to final storage impacts performance (latency, throughput)
» Storage /O optimizations are local: Difficult to perform global optimizations

» Cross-layer control mechanisms are not available (e.g., for data staging, dynamic load
balancing, resilience)
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8 R CLARISSE overview

» Cross-Layer Abstractions and Runtime for 1/0
Software Stack (CLARISSE)

» A 3-year project started October 2013

» European “Marie Curie” International Outgoing
Fellowship

» Collaboration between ANL and UC3M (Spain)

» Goals

» Enable global optimizations of the software 1/0
stack

» Design novel cross layer control abstractions and
mechanisms for supporting data flow optimizations
» Collective I/0O, data staging, exploit data locality
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CLARISSE overview

» Global logical view of optimizations space
» Distributed application of global optimization

» Facilitate the combination of local
optimizations based on a global view

» Cross-layer abstractions and run-time

» Facilitate the flow of control and data across
the 1/0 stack

» Decouple the data and control planes
» Control backplane (e.g. Argo project)
» Data plane (e.g. Mercury)

» Data flow optimizations

» Coordinated cross-layer buffering, caching,
prefetching

» Run-time optimizations (e.g. load-aware data
staging)
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|/O Stack
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» Software Defined Networking (e.g. Open Flow): global control based
on separation of control and data flow

» 1/O Flow (Microsoft Research): A Software Defined Storage
Architecture for virtualized data centers

» Fast Forward (Intel et al.): redesign of the storage |/0O stack

» Argo (ANL et al.), Hobbes (Sandia et al.): system software for
exascale based on an OS/Run-time environment

» Cross-layer optimizations for current I/O stack

» Parallel I/0O autotuning (UIUC & LBNL)
» Reduce performance interference (CaLCioM, INRIA & Argonne):
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P Optimizing the 1/O stack

» How complex is to optimize the current /O stack?
» How does storage I/O use system resources?

» How predictable is the performance?

» Where are the inefficiencies?

» Which are the causes?

» What do we need to address?




R Current |/O stack optimization é

High-Level I/O Library —— Block alignment, chunking, etc.
I/O Middleware I Collective/independent I/0O, data sieving, collective buffer size, number of
aggregators, etc.

I/O Forwarding

Parallel File Systems P Striping unit, striping factor, striping layout, caching, prefetching, etc.

» Huge parameter space

» How can the optimization be approached?
» domain knowledge, black-box, combination of the two

» Domain knowledge is increasingly harder
» Which are the hurdles?
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Motivational experiment

v

IOR benchmark: N processes concurrently write and non-overlapping region
to the file system through MPI-10 (MPICH 3.1)

MPICH 3.1
Darshan 2.2.8 HPC 1/O characterization tool

v

v

v

Access methods

» Independent I/O shared file

» Independent I/O file per processs
» Collective I/0O
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Indeﬁendent /0O Collective I/O




Vesta Blue Gene/Q system at ANL

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbit/sec 6.0 Gbit/sec

|

2048 compute nodes 1.6 GHz 16
cores 16GB RAM

5D torus network interconnecting
compute nodes

1 1/0 node per 32 GPFS 3.5

compute nodes Data: 40 NSD SATA drives
Client (I/O node) Max disk throughput: 250 MB/s
cache: 4GB (cache 1000 MB/s )

Block size: 8MB
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o Aggregate write throughput on BG/Q

2048 processes on 128 nodes 4096 processes on 256 nodes 8192 processes on 512 nodes
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o Aggregate write throughput on BG/Q
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Aggregate throughput (MEB/s)
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Aggregate write throughput on
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Aggregate throughput (MB/s)
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o Aggregate write throughput on BG/Q

2048 processes on 128 nodes 4096 processes on 256 nodes 8192 processes on 512 nodes
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» Collective buffer size: 8MB, 16MB (default), 32MB . . .
« Aggregators per 128 nodes: 40, 136, 520 (default) Lower Imp|ICIt Synch.
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Implicit
Allreduce  Alltoall Alltoallv Lseek Write synchronization

Rank 3

Node 0

Rank 4 (aggr 2)

Rank 5 I

Relils UIEI Ll B Node 1
\ f f T f f LFA f FA f g1 T
Partitioning Shuffle /0 Shuffle /O Shuffle I/O Shuffle I/O  Shuffle I/O
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FE Model for ROMIO Collective I/O

» 5 parameters

n: number of nodes

C: cores per node

S: access size

n,: number of aggregators
S.: Collective buffer size

v Vv Vv Vv v

» For contiguous accesses closed form expressions for network and storage
activity
» Number of operations
» Transfer size

» Goal: predict n, and s,




ARCOS B

o Modeling framework
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i Eca Network and storage performance

» Given a predictable network and storage performance, it is possible to
exactly predict n, and s,

» Network performance
» On BG/Q stable performance

» Implicit synchronization due to reuse of the collective buffer
» exclusively due to storage 1/0

» Storage performance
» Storage hierarchy: compute node -> I/0 node -> disk caches -> disks
» Noise due to other applications accessing the file system

» |/O forwarding layer implementation: calls forwarded from the cores of a compute
node are serialized (e.g. a Iseek arriving shortly after a write waits until the write is
forwarded)

» Concurrency: parallel access from several aggregators
» POSIX consistency semantics for sharing the file
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i Statistical model

» Data set:

Nodes: 128, 256, 512

Cores per node: 16

Transfer sizes/core (MB): 1, 2, 4, 8,16, 32, 64, 96, 128, 192, 256
Collective buffer size (MB): 8, 16 (default), 32

Number of aggregators per 128 nodes: 40, 136, 520 (default)
3x1x11x3x3 =297 data points

v Vv Vv Vv Vv v

» Pure statistical model
» Boosted regression trees (cubist)
» 20% training set
» 80% testing set (including the optimal parameters)

» Mixed model

» Analytical models for predicting the number of operations and
operation size

» Statistical models for the performance of individual operations
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i § Pure statistical model
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S Conclusions

» Automatic parameter configuration
» Black box modeling offers a limited benefit

» Mixed model: Unstable performance of storage system a great hurdle
» Having the complete knowledge of number of operations and operation size
» But same operation radically different

» Factors that limit efficiency of the I/O stack optimization
Serialization in the 1/O forwarding layer

File system noise

Implicit synchronization

POSIX consistency semantics

The lack of information about the state of other stack layers

v v v Vv v
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F . Conclusions

» What is needed?

» Better I/O scheduling

» De-serialization of concurrent independent operations

» Aggregation

Asynchrony (throughout the data stack and storage hierarchy)

Burst buffers (probably on I/O nodes)

An adequate consistency semantics for HPC (get rid of POSIX)

Mechanisms for facilitating the global reasoning about the optimization process

v v v v
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