

CLARISSE:	 	
Cross-‐Layer	 Abstrac4ons	 and	 Run-‐4me	 for	

I/O	 So<ware	 Stack	 of	 	
Extreme-‐Scale	 Systems 	 	

Florin Isaila!

ANL & University Carlos III!

Collaborators: Prasanna Balaprakash (ANL), Phil Carns (ANL), Jesus Carretero (UC3M),!

Javier Garcia (UC3M), Kevin Harms (ANL), Dries Kimpe (ANL), Rob Latham(ANL), !

Rob Ross (ANL), Stefan Wild (ANL)!

Outline!

}  Introduction!
}  CLARISSE overview!
}  Model-based I/O stack optimization!
}  Conclusions !!
!
!

2 Florin Isaila et al., ANL & UC3M – Cross Layer Abstractions and Run-time for Storage I/O Stack

Introduction!

}  Scientific applications (climate, genomics, high energy
physics, etc.) process increasingly larger data sets!

}  Future high scale supercomputers need to deal efficiently
with big data!

}  I/O software stack needs to evolve in terms of
performance, programmability, resilience, energy
efficiency !

}  This talk will concentrate on performance !

3

I/O	 Forwarding	

Parallel	 File	 Systems	

High-‐Level	 I/O	 Library	

I/O	 Middleware	

Applica4on	

Compute	 nodes	

I/O	 nodes	

Storage	 nodes	

Back-‐end	 storage	

Maps	 applica4on	 abstrac4ons	
onto	 storage	 abstrac4ons	 (e.g.:	
HDF5,	 ParallelNetCDF)	
Reduces	 the	 number	 of	 file	 system	
calls	 by	 op4miza4ons	 like	 collec4ve	
I/O	 (e.g.:	 MPI-‐IO)	
Offloads	 I/O	 func4onality	 from	
compute	 nodes	 (e.g.:	 Mercury,	
IOFSL)	

Offer	 a	 global	 name	 space	 and	 high	
performance	 storage	 access	 (e.g.:	
GPFS,	 Lustre,	 PVFS)	

Block	 and	 storage	 object	 devices	 Storage	 drivers	 	

Current problems of storage I/O stack!

4

}  Long path from compute nodes to final storage impacts performance (latency, throughput) !

}  Storage I/O optimizations are local: Difficult to perform global optimizations !

}  Cross-layer control mechanisms are not available (e.g., for data staging, dynamic load
balancing, resilience)!

Florin Isaila et al., ANL & UC3M – Cross Layer Abstractions and Run-time for Storage I/O Stack

CLARISSE overview!

}  Cross-Layer Abstractions and Runtime for I/O
Software Stack (CLARISSE)!
}  A 3-year project started October 2013!
}  European “Marie Curie” International Outgoing

Fellowship!
}  Collaboration between ANL and UC3M (Spain)!

}  Goals!
}  Enable global optimizations of the software I/O

stack!
}  Design novel cross layer control abstractions and

mechanisms for supporting data flow optimizations!
}  Collective I/O, data staging, exploit data locality!

!
5 Florin Isaila et al., ANL & UC3M – Cross Layer Abstractions and Run-time for Storage I/O Stack

CLARISSE overview !!

}  Global logical view of optimizations space!
}  Distributed application of global optimization!
}  Facilitate the combination of local

optimizations based on a global view!

}  Cross-layer abstractions and run-time!
}  Facilitate the flow of control and data across

the I/O stack!
}  Decouple the data and control planes!

}  Control backplane (e.g. Argo project)!
}  Data plane (e.g. Mercury) !

}  Data flow optimizations!
}  Coordinated cross-layer buffering, caching,

prefetching!
}  Run-time optimizations (e.g. load-aware data

staging)!
!
!

6 Florin Isaila et al., ANL & UC3M – Cross Layer Abstractions and Run-time for Storage I/O Stack

Related work!

}  Software Defined Networking (e.g. Open Flow): global control based
on separation of control and data flow!

}  I/O Flow (Microsoft Research): A Software Defined Storage
Architecture for virtualized data centers!

}  Fast Forward (Intel et al.): redesign of the storage I/O stack!

}  Argo (ANL et al.), Hobbes (Sandia et al.): system software for
exascale based on an OS/Run-time environment !

}  Cross-layer optimizations for current I/O stack!
}  Parallel I/O autotuning (UIUC & LBNL)!
}  Reduce performance interference (CaLCioM, INRIA & Argonne):!

7 Florin Isaila et al., ANL & UC3M – Cross Layer Abstractions and Run-time for Storage I/O Stack (CLARISSE)

Outline!

}  Introduction!
}  CLARISSE overview!
}  I/O stack optimization!
}  Conclusions !!
!
!

8 Florin Isaila et al., ANL & UC3M – Cross Layer Abstractions and Run-time for Storage I/O Stack

Optimizing the I/O stack!

}  How complex is to optimize the current I/O stack?!

}  How does storage I/O use system resources?!

}  How predictable is the performance? !!

}  Where are the inefficiencies?!

}  Which are the causes?!

}  What do we need to address?!

9

Current I/O stack optimization!

}  Huge parameter space!

}  How can the optimization be approached?!
}  domain knowledge, black-box, combination of the two !

}  Domain knowledge is increasingly harder!
}  Which are the hurdles?!

! 10

I/O	 Forwarding	

Parallel	 File	 Systems	

High-‐Level	 I/O	 Library	

I/O	 Middleware	

Applica4on	

Block	 alignment,	 chunking,	 etc.	

Collec4ve/independent	 I/O,	 data	 sieving,	 collec4ve	 buffer	 size,	 number	 of	
aggregators,	 etc.	

Striping	 unit,	 striping	 factor,	 striping	 layout,	 caching,	 prefetching,	 etc.	

Storage	 drivers	 	

Motivational experiment !

}  IOR benchmark: N processes concurrently write and non-overlapping region
to the file system through MPI-IO (MPICH 3.1)!

}  MPICH 3.1!

}  Darshan 2.2.8 HPC I/O characterization tool!

}  Access methods!
}  Independent I/O shared file!
}  Independent I/O file per processs!
}  Collective I/O!

11

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Vesta Blue Gene/Q system at ANL 
!

2048 compute nodes 1.6 GHz 16
cores 16GB RAM
5D torus network interconnecting
compute nodes

12

GPFS 3.5
Data: 40 NSD SATA drives
Max disk throughput: 250 MB/s
(cache 1000 MB/s)
Block size: 8MB

1 I/O node per 32
compute nodes
Client (I/O node)
cache: 4GB !

Aggregate write throughput on BG/Q!

13

Aggregate write throughput on BG/Q!

14

Aggregate write throughput on BG/Q!

15

Contention
GFS locking cost

Aggregate write throughput on BG/Q!

16

Contention

Aggregate write throughput on BG/Q!

17

Lower Contention
GFS locking cost

Aggregate write throughput on BG/Q!

18

Best of 9 collective I/O configurations
•  Collective buffer size: 8MB, 16MB (default), 32MB
•  Aggregators per 128 nodes: 40, 136, 520 (default)

Lower Contention
GFS locking cost
Lower implicit synch.

Allreduce Alltoall Alltoallv Lseek Write

Rank 0 (aggr 0)

Rank 2 (aggr 1)

Rank 1

Rank 3

Rank 4 (aggr 2)

Rank 6 (aggr 3)

Rank 5

Rank 7

Time

Implicit
synchronization

Node 0

Node 1

Anatomy of collective I/O!

Partitioning Shuffle Shuffle Shuffle Shuffle I/O Shuffle I/O I/O I/O I/O

Model for ROMIO Collective I/O!

}  5 parameters!
}  n: number of nodes!
}  c: cores per node!
}  s: access size!
}  na: number of aggregators!
}  scb: collective buffer size!

}  For contiguous accesses closed form expressions for network and storage
activity !
}  Number of operations!
}  Transfer size!

}  Goal: predict na and scb!

!

!

20

Modeling framework!

Algorithmic
models

Performance
models

Alltoall Performance
Alltoall

Alltoallv Performance
Alltoallv

Allreduce Performance
Allreduce

Storage Performance
Storage

nodes (n)
cores per node (c)

access size (s)
aggregators (na)

cb size (scb)

Performance
score

Network and storage performance!

}  Given a predictable network and storage performance, it is possible to
exactly predict na and scb!

}  Network performance !
}  On BG/Q stable performance!
}  Implicit synchronization due to reuse of the collective buffer!

}  exclusively due to storage I/O !

}  Storage performance!
}  Storage hierarchy: compute node -> I/O node -> disk caches -> disks!
}  Noise due to other applications accessing the file system!
}  I/O forwarding layer implementation: calls forwarded from the cores of a compute

node are serialized (e.g. a lseek arriving shortly after a write waits until the write is
forwarded) !

}  Concurrency: parallel access from several aggregators !
}  POSIX consistency semantics for sharing the file !

22

Statistical model !!

}  Data set:!
}  Nodes: 128, 256, 512!
}  Cores per node: 16!
}  Transfer sizes/core (MB): 1, 2, 4, 8,16, 32, 64, 96, 128, 192, 256!
}  Collective buffer size (MB): 8, 16 (default), 32!
}  Number of aggregators per 128 nodes: 40, 136, 520 (default)!
}  3 x 1 x 11 x 3 x 3 = 297 data points !

}  Pure statistical model!
}  Boosted regression trees (cubist)!
}  20% training set !
}  80% testing set (including the optimal parameters)!

}  Mixed model!
}  Analytical models for predicting the number of operations and

operation size!
}  Statistical models for the performance of individual operations!

23

Pure statistical model!

24

Analytical/statistical model!

25

Conclusions !!

}  Automatic parameter configuration!
}  Black box modeling offers a limited benefit!
}  Mixed model: Unstable performance of storage system a great hurdle!

}  Having the complete knowledge of number of operations and operation size!
}  But same operation radically different !

}  Factors that limit efficiency of the I/O stack optimization!
}  Serialization in the I/O forwarding layer !
}  File system noise !
}  Implicit synchronization!
}  POSIX consistency semantics !
}  The lack of information about the state of other stack layers!

26

Conclusions !!

}  What is needed?!
}  Better I/O scheduling !

}  De-serialization of concurrent independent operations !
}  Aggregation !

}  Asynchrony (throughout the data stack and storage hierarchy)!
}  Burst buffers (probably on I/O nodes)!
}  An adequate consistency semantics for HPC (get rid of POSIX) !
}  Mechanisms for facilitating the global reasoning about the optimization process!

27

!!

Thank you!

28 Florin Isaila et al., ANL & UC3M – Cross Layer Abstractions and Run-time for Storage I/O Stack (CLARISSE)

