AR;Of;: é
CLARISSE:
Cross-Layer Abstractions and Run-time for
|/O Software Stack of

Extreme-Scale Systems

Florin Isaila
ANL & University Carlos Il

Collaborators: Prasanna Balaprakash (ANL), Phil Carns (ANL), Jesus Carretero (UC3M),
Javier Garcia (UC3M), Kevin Harms (ANL), Dries Kimpe (ANL), Rob Latham(ANL),
Rob Ross (ANL), Stefan Wild (ANL)

ARCOS | |
Argonneé | ﬂ

—
AAAAAAAAAAAAAAAAAA))

ARCOS B

S Outline

» Introduction
» CLARISSE overview
» Model-based /O stack optimization

» Conclusions

ARCOS B B]
Sl Introduction é

» Scientific applications (climate, genomics, high energy
physics, etc.) process increasingly larger data sets

» Future high scale supercomputers need to deal efficiently
with big data

» 1/O software stack needs to evolve in terms of
performance, programmability, resilience, energy
efficiency

» This talk will concentrate on performance

ARCOS B B 3
= ® ® Current problems of storage I/O stack

e . Maps application abstractions
111111111111111111111 iigi-level o ey | onto storage abstractions (e.g.:
Compute nodes 1711117171777117171 HDFS5, ParalleINetCDF)
ﬂﬂﬂﬂﬂﬂﬂﬂ . Redu'ces the number of file system
/0 Middleware . calls by optimizations like collective
I/O (e.g.: MPI-10)
/O Forwarding ! | Offloads I/O functionality from
] compute nodes (e.g.: Mercury,
1/0 nodes U0oboobo IOFSL)
Parallel File Systems — | Offer a global name space and high
B performance storage access (e.g.:

Sstorage nodes (JJUUU U GPFS, Lustre, PVFS)
- —— Block and storage object devices

Back-end storage Efffﬂ

» Long path from compute nodes to final storage impacts performance (latency, throughput)
» Storage /O optimizations are local: Difficult to perform global optimizations

» Cross-layer control mechanisms are not available (e.g., for data staging, dynamic load
balancing, resilience)

ARCOS ! |

8 R CLARISSE overview

» Cross-Layer Abstractions and Runtime for 1/0
Software Stack (CLARISSE)

» A 3-year project started October 2013

» European “Marie Curie” International Outgoing
Fellowship

» Collaboration between ANL and UC3M (Spain)

» Goals

» Enable global optimizations of the software 1/0
stack

» Design novel cross layer control abstractions and
mechanisms for supporting data flow optimizations
» Collective I/0O, data staging, exploit data locality

ARCOS

CLARISSE overview

» Global logical view of optimizations space
» Distributed application of global optimization

» Facilitate the combination of local
optimizations based on a global view

» Cross-layer abstractions and run-time

» Facilitate the flow of control and data across
the 1/0 stack

» Decouple the data and control planes
» Control backplane (e.g. Argo project)
» Data plane (e.g. Mercury)

» Data flow optimizations

» Coordinated cross-layer buffering, caching,
prefetching

» Run-time optimizations (e.g. load-aware data
staging)

A

<:> Data flow <= Control flow

¢

1/0 Middleware .)
i} S Gy Controller

tion backplane

1/0 Forwarding

&

J Buffering

+ Aggregation Local

* Caching control
° Prefetching

- Optimization selection uLele{V][S

(LCM)

Event processing
Etc.

|/O Stack

ARCOS B B
Sl Related work é

» Software Defined Networking (e.g. Open Flow): global control based
on separation of control and data flow

» 1/O Flow (Microsoft Research): A Software Defined Storage
Architecture for virtualized data centers

» Fast Forward (Intel et al.): redesign of the storage |/0O stack

» Argo (ANL et al.), Hobbes (Sandia et al.): system software for
exascale based on an OS/Run-time environment

» Cross-layer optimizations for current I/O stack

» Parallel I/0O autotuning (UIUC & LBNL)
» Reduce performance interference (CaLCioM, INRIA & Argonne):

ARCOS B

S Outline

» Introduction
» CLARISSE overview
» /O stack optimization

» Conclusions

ARCOS

P Optimizing the 1/O stack

» How complex is to optimize the current /O stack?
» How does storage I/O use system resources?

» How predictable is the performance?

» Where are the inefficiencies?

» Which are the causes?

» What do we need to address?

R Current |/O stack optimization é

High-Level I/O Library —— Block alignment, chunking, etc.
I/O Middleware I Collective/independent I/0O, data sieving, collective buffer size, number of
aggregators, etc.

I/O Forwarding

Parallel File Systems P Striping unit, striping factor, striping layout, caching, prefetching, etc.

» Huge parameter space

» How can the optimization be approached?
» domain knowledge, black-box, combination of the two

» Domain knowledge is increasingly harder
» Which are the hurdles?

ARCOS

Motivational experiment

v

IOR benchmark: N processes concurrently write and non-overlapping region
to the file system through MPI-10 (MPICH 3.1)

MPICH 3.1
Darshan 2.2.8 HPC 1/O characterization tool

v

v

v

Access methods

» Independent I/O shared file

» Independent I/O file per processs
» Collective I/0O

Po pr[p2 o s [po et pa pa e s
e
B I

Indeﬁendent /0O Collective I/O

Vesta Blue Gene/Q system at ANL

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbit/sec 6.0 Gbit/sec

|

2048 compute nodes 1.6 GHz 16
cores 16GB RAM

5D torus network interconnecting
compute nodes

1 1/0 node per 32 GPFS 3.5

compute nodes Data: 40 NSD SATA drives
Client (I/O node) Max disk throughput: 250 MB/s
cache: 4GB (cache 1000 MB/s)

Block size: 8MB

ARCOS B

o Aggregate write throughput on BG/Q

2048 processes on 128 nodes 4096 processes on 256 nodes 8192 processes on 512 nodes

50000
L
50000
50000
|

40000
L
40000
40000
L

30000
30000
30000

20000
20000

Aggregate throughput (MB/s)
20000

Aggregate throughput (MB/s)
Aggregate throughput (MB/s)

10000
L
10000
10000
L

T T T T T T T T T T T T T T T T T T T

T T T
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 B4 128 256 4 8 16 32 64 128 256
Access size per process (MB) Access size per process (MB) Access size per process (MB)

-
N

—— Maximum throughput to /O nodes

—— Maximum throughput to disk cache

—— Maximum throughput to disk
Independent write /dev/null

— Independent write (shared file)

— Independent write (file per proc)

— Collective write (default param)
Collective write (best config)

ARCOS B

o Aggregate write throughput on BG/Q

2048 processes on 128 nodes 4096 processes on 256 nodes 8192 processes on 512 nodes

50000
L
50000
50000
|

40000
L
40000
40000
L

30000
30000
30000

20000
20000

Aggregate throughput (MB/s)
20000

Aggregate throughput (MB/s)
Aggregate throughput (MB/s)

10000
L
10000
10000
L

T T T T T T T T T T T T T T T T T T T

T T T
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 B4 128 256 4 8 16 32 64 128 256
Access size per process (MB) Access size per process (MB) Access size per process (MB)

-
N

—— Maximum throughput to /O nodes

—— Maximum throughput to disk cache

—— Maximum throughput to disk
Independent write /dev/null

— Independent write (shared file)

— Independent write (file per proc)

— Collective write (default param)
Collective write (best config)

ARCOS B

Aggregate throughput (MEB/s)

20000 30000 40000 50000

10000

(=]

Aggregate write throughput on BG/Q

2048 processes on 128 nodes

4096 processes on 256 nodes

8192 processes on 512 nodes

Access size per process (MB)

Access size per process (MB)

Maximum throughput to I/0 nodes
Maximum throughput to disk cache
Maximum throughput to disk
Independent write /dev/null
Independent write (shared file)
Independent write (file per proc)
Collective write (default param)
Collective write (best config)

(=3 (=]
8 8 -
o (=]
w w
(=3 o
8 8
% 9
2 (4
))
2 2
28 28]
& 3 5 8
= 3
o <
£ £
[[
[o §
> 3
< <
g g
e e //
T -
- _—t . A ,74A“,/”
e - — - o -___,rv"’j
— =) — o—“__—[
4 8 16 32 64 128 256 2 4 8 16 32 64 128 256 4 8 16 32 64 128 256

ccess size per process (MB)

Contention
GFS locking cost

ARCOS B

Aggregate write throughput on

Aggregate throughput (MB/s)

20000 30000 40000 50000

10000

o

2048 processes on 128 nodes

4096 processes on 256 nodes

8192 processes on 512 nodes

50000

50000
!

Aggregate throughput (MB/s)

20000 30000 40000

10000

o

S W

30000 40000
L L

Aggregate throughput (MB/s)
20000

10000
L

od ¢

T
4 8 16 32 64
Access size per process (MB)

T
128

™
256

T
1 2 4 8 16 32 64 128

Access size per process (MB)

™
256

Maximum throughput to I/O nodes
Maximum throughput to disk cache
Maximum throughput to disk
Independent write /dev/null
Independent write (shared file)
Independent write (file per proc)
Collective write (default param)
Collective write (best config)

T
4 8 16 32 64
Access size per process (MB)

T T
128 256

Contention

ARCOS B

Aggregate throughput (MB/s)

20000 30000 40000 50000

10000

o

Aggregate write throughput on BG/Q

2048 processes on 128 nodes

4096 processes on 256 nodes

8192 processes on 512 nodes

o

o (=3
8 - 8
o o
w w
o (=3
8 8
_ % _ %
w w
[@
n n
S =S
po =
5 5
H T
5 8 5 3
3 3
° °
[o
c E
£ =
25 2o
5% 2 g
[2
= S
< <
o (=3
8 8
(=] o
2 2

o

T T T T T T T T

1 2 4 8 16 32 64 128
Access size per process (MB)

T

T
256

T T T T T T T 1

4 8 16 32 B4 128 256
Access size per process (MB)

Maximum throughput to I/O nodes
Maximum throughput to disk cache
Maximum throughput to disk
Independent write /dev/null
Independent write (shared file)
Independent write (file per proc)
Collective write (default param)
Collective write (best config)

T T T T T T

4 8 16 32 64 128
Access size per process (MB)

T

T
256

Lower Contention
GFS locking cost

ARCOS B

o Aggregate write throughput on BG/Q

2048 processes on 128 nodes 4096 processes on 256 nodes 8192 processes on 512 nodes
(=3 (=3 o
8 - 8 - 8 -
o o o
w w w
f=3 (=3 o
8 4 8 8
8 g g
4 e 4
0 i) 0
= = =
38, 28, 28]
& 8 & 8 &
3 3 3
e [o
= £ £
L5 Lo Lo
S 3 S 3s S3
e g g g e g
3 S 3
< < <
o 1 1 o (=3
8 - /-/ AN — 8 8
2 + e e
’ T
1 -
od =——— o - o4’
T T T + T T —T T T T T t T T —T T T + T T —TTTT
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 B4 128 256 8 16 32 64 128 256
Access size per process (MB) Access size per process (MB) Access size per process (MB)

—— Maximum throughput to /O nodes

—— Maximum throughput to disk cache

—— Maximum throughput to disk
Independent write /dev/null

— Independent write (shared file)

— Independent write (file per proc)

— Collective write (default param)
Collective write (best config)

Lower Contention

_ , GFS locking cost
» Collective buffer size: 8MB, 16MB (default), 32MB . . .
« Aggregators per 128 nodes: 40, 136, 520 (default) Lower Imp|ICIt Synch.

ARCOS B B
P Anatomy of collective /O é

Implicit
Allreduce Alltoall Alltoallv Lseek Write synchronization

Rank 3

Node 0

Rank 4 (aggr 2)

Rank 5 I

Relils UIEI Ll B Node 1
\ f f T f f LFA f FA f g1 T
Partitioning Shuffle /0 Shuffle /O Shuffle I/O Shuffle I/O Shuffle I/O

ARCOS

FE Model for ROMIO Collective I/O

» 5 parameters

n: number of nodes

C: cores per node

S: access size

n,: number of aggregators
S.: Collective buffer size

v Vv Vv Vv v

» For contiguous accesses closed form expressions for network and storage
activity
» Number of operations
» Transfer size

» Goal: predict n, and s,

ARCOS B

o Modeling framework

nodes (n)

cores per node (C) we
access Size (S) w

il

Algorithmic
models

Alltoall

\

Alltoallv

aggregators (n,)

cb size (sg,)

\

Allreduce

/

Storage

LA A A l’VVVVl’ l’VVVV

Performance
models
~

Performance

Alltoall \
Y,

\

Performance
Alltoallv

~

\
Performance | ="

Allreduce
J

%

Performance
Storage /

Performance
score

ARCOS

i Eca Network and storage performance

» Given a predictable network and storage performance, it is possible to
exactly predict n, and s,

» Network performance
» On BG/Q stable performance

» Implicit synchronization due to reuse of the collective buffer
» exclusively due to storage 1/0

» Storage performance
» Storage hierarchy: compute node -> I/0 node -> disk caches -> disks
» Noise due to other applications accessing the file system

» |/O forwarding layer implementation: calls forwarded from the cores of a compute
node are serialized (e.g. a Iseek arriving shortly after a write waits until the write is
forwarded)

» Concurrency: parallel access from several aggregators
» POSIX consistency semantics for sharing the file

ARCOS

i Statistical model

» Data set:

Nodes: 128, 256, 512

Cores per node: 16

Transfer sizes/core (MB): 1, 2, 4, 8,16, 32, 64, 96, 128, 192, 256
Collective buffer size (MB): 8, 16 (default), 32

Number of aggregators per 128 nodes: 40, 136, 520 (default)
3x1x11x3x3 =297 data points

v Vv Vv Vv Vv v

» Pure statistical model
» Boosted regression trees (cubist)
» 20% training set
» 80% testing set (including the optimal parameters)

» Mixed model

» Analytical models for predicting the number of operations and
operation size

» Statistical models for the performance of individual operations

ARCOS B

i § Pure statistical model

response = mean_time;train = 20% response = mean_time;train = 20%
< o | Error o
= 1% of
|l — 5% o .
JR— 0,
o - "o 10% o oof
Rl o
> [0 °
g > : #
o) Do
S N L9 o
& 3 o "
I Lo | q
[aIFoN] 1) S po
o 8% /o
~— - oo /
S R2 = 0.91
~ i % RMSE = 1.21e+01
e 1 , ,] €02 05 20 50 200 100.0
0.5 1.0 1.5 2.0 2.5 Observed values

default/direct

ARCOS B

3.0

1

2.5

2.0

Frequency
1.5

1.0

0.5

Analytical/statistical model

response = mean_time;train = 20%

o

0.5

10 15 20 25 3.0

default/intermediate

3.5

Predicted values

100.0

20.0

2 05

0

20 5.0

response = mean_time;train = 20%

Error

1%
41— 5%
— 10% @

Op O

8 o © co [o}

o @@ o

® oo ® 00/

Y
o dD//

R2 =-9.83
RMSE = 1.36e+02

20 50 200 100.0
Observed values

02 05

ARCOS

S Conclusions

» Automatic parameter configuration
» Black box modeling offers a limited benefit

» Mixed model: Unstable performance of storage system a great hurdle
» Having the complete knowledge of number of operations and operation size
» But same operation radically different

» Factors that limit efficiency of the I/O stack optimization
Serialization in the 1/O forwarding layer

File system noise

Implicit synchronization

POSIX consistency semantics

The lack of information about the state of other stack layers

v v v Vv v

ARCOS B

F . Conclusions

» What is needed?

» Better I/O scheduling

» De-serialization of concurrent independent operations

» Aggregation

Asynchrony (throughout the data stack and storage hierarchy)

Burst buffers (probably on I/O nodes)

An adequate consistency semantics for HPC (get rid of POSIX)

Mechanisms for facilitating the global reasoning about the optimization process

v v v v

AAAAA u
| m

Thank you

