ARCOS ¥ B
N

Optimizing data staging based on autotuning,
coordination, and locality exploitation on large scale
supercomputers

Florin Isaila
ANL & University Carlos Il

Collaborators: Prasanna Balaprakash (ANL), Phil Carns (ANL), Jesus Carretero (UC3M),
Franscisco Duro (UC3M), Javier Garcia (UC3M), Kevin Harms (ANL),
Paul Hoveland (ANL), Dries Kimpe (ANL), Rob Latham(ANL), Tom Peterka (ANL),
Rob Ross (ANL), Stefan Wild (ANL)

ARCOS | |
Argonneé ﬂ

—
AAAAAAAAAAAAAAAAAA))

ARCOS i B

"N

® Current problems of storage /O software

5
I

|
S5

Liii]

7
X

Compute nodes

11
111

11
i

7

High-Level 1/O Library

|/0 Middleware

|/O Forwarding

[1

Jobobou

I/O nodes

0

Parallel File Systems —

nooooo

Storage nodes

Back-end storage Efffﬂ

b

Maps application abstractions
onto storage abstractions (e.g.:

HDF5, ParalleINetCDF)
Reduces the number of file system

calls by optimizations like collective
I/O (e.g.: MPI-10)

Offloads I/O functionality from
compute nodes (e.g.: Mercury,
|OFSL)

Offer a global name space and high
performance storage access (e.g.:
GPFS, Lustre, PVFS)

Block and storage object devices

» Optimization: complex stack, deep distributed storage hierarchy

» Coordination: poor state of programmable control mechanisms are not available (e.g., for
data staging, dynamic load balancing, resilience)

» Exploit data locality

ARCOS i B :
o Outline 3

» Optimization: Model-based autotuning of collective I/O

» Coordination: Data staging coordination

» Exploit data locality: Improving the scalability and
performance of the Swift workflow language by leveraging
data locality through Hercules

®# # Parallel /O tuning ‘)

» Huge parameter space of the storage /O software stack

» Domain knowledge is increasingly harder: software and hardware

complexity
High-Level I/O Library —— Block alignment, chunking, etc.
I/O Middleware I— Collective/independent 1/0O, data sieving, collective buffer size, number of
aggregators, etc.

I/O Forwarding

Parallel File Systems P Striping unit, striping factor, striping layout, caching, prefetching, etc.

ARCOS & B . 3
el Parallel 1/0O autotuning approaches

» Model based tuning
» Analytical: Extensive domain stack Architecture

Software

knowledge required: software stack,
architectural characteristics Input S

» Machine learning [Kumar2013, parameters
Yu2012]

Performance
prediction

Performance
models

Application Noise

» Search-based tuning
» Genetic algorithms [Bezhad2013]
» Simulated annealing [Chen2000]

» Hybrid [Bezhad2014]

This work
* Model-based tuning of two-phase-I/O, the most popular collective 1/0O
implementation from ROMIO
« Combination of analytical and machine learning models
» |EEE Cluster 2015 paper

ARCOS

» N

- Collective I/0

processes collectively write

or read to a file

» Two-phase /O write

Computation and communication for
mapping writes to the file domain

Communication for sending data to
aggregators

Storage 1/O for storing the data to the
file system

»

Phase 1

Aggregators |[AO0| | AT

Phase 2

File system

ARCOS B .
PR i Modeling framework é

Black box model

4 parameters

: nodes (n
n: number c_)f nodes sccosm o o ook box Performance
S: access Ssize aggregators (N, pee model prediction
cb size (s,

n_: number of aggregators
S Collective buffer size

Application-specific

data
Goal: tune n, and s, Application
runs
Hybrid model
{ Analytical models l Data-driven (Analytical |
I for operation | | performance o model |
| counts and sizes | I models I I
|
s ~ . '
I Analytical '|_|> Performance I
nodes (n) I | communication L5 communication |Performance

access size (s.) a| models l_» models Iprediction

aggregators (n p) \ 4 1> I
t - , N e
cb sizea-(‘;f:b) > | Analytical =1 Performance I
[storage Jl—b storage 1
|

|\\ models /7_\>\\ models |

7 N\

_———

Application-agnostic data

Operation
benchmarks

ARCOS B

¥ Experimental evaluation

» 1OR benchmark: N processes concurrently write and non-overlapping region
to the file system through MPI-10

» MPICH 3.1

» Vesta Blue Gene/Q
» 2048 compute nodes 1.6 GHz 16 cores 16GB RAM

» 5D torus network interconnecting compute nodes

» 11/0O node per 32 compute nodes

v

Client (/0O node) cache: 4GB
» GPFS 3.5: Block size: 8MB, 40 NSD SATA data drives (Max throughput: 250 MB/s)

» Benchmark for performance models: ALCF MPI benchmark

ARCOS B

FEls Machine learning model

» Black box models and performance models

» linear regression, neural networks, support vector machines, random forests, and cubist

» Selected the model with best RMSE and R?

» Data set:

» Black box model: 297 points
» Processes: 2048 (128 nodes on 16 cores), 4196, and 8392
» Transfer sizes/core (MB): 1, 2, 4, 8,16, 32, 64, 96, 128, 192, 256
» Collective buffer size (MB): 8, 16 (default), 32
» Number of aggregators per 128 nodes: 40, 136, 520 (default)
» Performance models
» Alltoall: : 51 points for 2,048, 4,096, and 8,192 ranks and for message sizes
between 1 byte and 256KB.

» Alltoallv: 1,044 points for distributing message sizes between 1 byte and 64 MB
(in powers of 2) for subsets of 2,048, 4,096, and 8,192 ranks.

» Allreduce: 57 points for 2,048, 4,096, and 8,192 ranks and for message sizes
between 4 bytes and 1 MB.

» POSIX: 567 points for various sizes and various subsets of 2,048, 4,096, and
8,192 ranks.

ARCOS B

Frequency

models

Speedup of ml; training set size=99

e S

csdhaccscccsand

....................
+ 4

15 20 25 30 35
Average speedup

Comparison between black-box and hyb

Frequency

Speedup of hybrid over default

15

15 20 25 30 35
Average speedup

05 1.0

ARCOS B

e Comparison among various approache

Speedup of various approaches over default

o [o S B A
@ 8 8 6 8
% © §
O | e S S
™ ; : :
m SN T I Y I Iy YT OO . O YT
N 8 8 ©]
Q.
3
(@)
8
Q.
wn

1.5

1.0

- e N U S

0.5

rs ml hyt')rid opti'mal
algorithms

ARCOS B

ol Impact of noise

Speedup of hybrid over default

speedup
20 25

1.5

1.0

0.5

Noise level(o)

speedup

Speedup of ml over default

0 0.01 1 3 5
Noise level(o)

ARCOS i B

W Outline

» Optimization: Model-based autotuning of collective 1/O

» Coordination: Data staging coordination

» Exploit data locality: Improving the scalability and
performance of the Swift workflow language by leveraging
data locality through Hercules

ARCOS

P Data staging challenges

v

Concurrent parallel data flows

» Lack of data staging coordination
-1 Among applications
-1 Between applications and the system

v

Increasing storage hierarchy

Lack of standards for dynamic monitoring of large scale infrastructures (e.g.
load, faults)

v

v

Coupled control and data mechanisms

Goal: offer novel mechanisms for data staging coordination to improve
» Load balance

» Resilience

» Parallel /0O scheduling

v

ARCOS

P Coordination approach : CLARISSE lib

v

Decouple the data and control paths

v

Data-path: abstractions used to implement data access operations

» Collective I/0O
» 2 implementation: view based I/O, list-IO (can be used as both server-based 1/0
and client-based 1/0O)

v

Control path: Based on a publish/subscribe substrate (e.g. Beacon)

» Processes can subscribe to events having certain properties
» Associate call-back
» Wait for an event
» Check for the arrival of an event

Hierarchical control

» Global controller

» Application controller

» Node controller

» All nodes participate in control

v

ARCOS

CLARISSE hierarchical control infrastru
Application 1 Application 2

_H
i
(3
&

I/O nodes K

File system

. Application Controller

. Global Controller

H H He

o
e

L4~
lrirls

N
;I_g
-

Shared servers

7

ARCOS

CLARISSE hierarchical control infrastru
Application 1

. Application Controller

. Global Controller

Shared servers

I/O nodes

File system

O

Application 2

(.j (
\ \

N

7

;Ig-

i;

L4~
lrirls

H H He

Inject load

ARCOS B

ol Load injection at 1 server (1 application

Aggregate write throughput for injecting load on one
server (one operation of 30 Gbytes)

12000

10000

8000

em=»1920 processes
6000

e3840 processes

7680 processes
4000

@]5360 processes

Aggregate write throughput (MB/s)

2000

0 1 2 4 8 16 32 64 128 256 512
Injected load per server operation (microseconds)

ARCOS
/. /. ,'

Dynamically scaling-down

Write time (10 operations, 3840 processes, 256/255 servers)

Not removed loaded server

Removed loaded server

Detect loaded server
Reconstruct server map

J]
N

A

X1 O O

0

20 40 60
Time(seconds)

New epoch with fewer servers

80 100 120 140

160

ARCOS
o .

Dynamically scaling-down

Write time (10 operations, 15360 processes, 1024/1023 servers)

Not removed loaded server

Removed loaded server

—_—

160

ARCOS

5 IR Parallel 1/0 scheduling

4

Several applications share

v

The application controller notifies the global controller

v

The global controller schedules the next application to be run

v

Several policies possible
» FCFS evaluation

ARCOS it |
EE N

A

FCFS scheduling versus no scheduling

Write timeline for two parallel clients with 3840 processes each -
No scheduling

> [l N [] [] [[]]] [
Il] [] N] 1]]
0 50 100 150 200 250
Write timeline for two parallel clients with 3840 processes each -
FCFS scheduling
2 i 1 I 1 1 []
'l I I 0 i

250

ARCOS i B

W Outline

» Optimization: Model-based autotuning of collective 1/O

» Coordination: Data staging coordination

» Exploit data locality: Improving the scalability and
performance of the Swift workflow language by
leveraging data locality through Hercules

ARCOS ' B
Sl Swift/T 3

» Swift/T: Language and runtime for dataflow applications

(int r) myproc (int i, int 3Jj)

{

int £ = F(1);
int g = G(J);
r = f + g;

}

» F() and G() implemented in native code or external
programs

» F() and G() run concurrently in different processes

» ris computed when they are both done

ARCOS B

r . Swift/T architecture
user Swift Gompsen Turbine
program code

| l

l l l l l
engine engine engine engine engine

I I I I I

load balancing (ADLB) / data services
Leaf tasks Notifications

worker worker worker worker worker
worker worker worker worker worker

ARCOS

i Problem description

» Load balancer is not locality-aware

» Tasks communicate through the parallel file system
(bottleneck)

» Objectives:

» Improve the performance of inter-task communication
» Data locality

» Investigate the tradeoffs between data locality and load-balance in
workflow execution
» ldeal load balance, but poor locality
» ldeal data locality, but poor load balance (not all nodes used)

ARCOS

ol Approach

» Hercules
» persistent key value store based on Memcached
» On-demand deployment of servers on application nodes

» Data placement over the servers
» Consistent hashing (original Memcached)
» Locality-aware (implemented)
» Load-aware (under implementation)
» Capacity aware

» New Swift language constructs
» Soft location: best effort task placement
» Hard location: enforce data locality

ARCOS

File-copy Strong Scalability - Aggregated Throughput*
1024 files x 256 MBytes (R+W)

80000

MB/s)

2 70000

60000

50000

40000

30000

Total Aggregated* throughput (

20000 // \\
10000 — ;
0 O
8 16 32 64 128

Worker nodes (x8 ppn)

====GPFS ===HERCULES HERCULES LOCALITY

Fusion Linux cluster

« 320 nodes, 2 x quad core, 36 GB RAM

* Infiniband QDR (4 GB/s) and gigabit ethernet
« GPFS: up to 2500 MB/s

ARCOS

MapReduce-like WC application
256 files x 256 MB - 64 GB

Total execution time

250
200
m
=
S 150
2
o
£
=
© 100
o
|—
50
0 . .
GPFS Hercules Hercules Locality - SOFT Hercules Locality HARD
 8x8 workers 218.731 158.384 172.57 147.741
M 32x8 workers 206.769 108.34 97.32 107.45

A

ARCOS

=& ® Ongoing and future work

» Model-based autotuning 1/0
» Performance predictability
» Improve individual models

» Noise
» Load and noise modeling for load detection in data staging (multiple servers)

» Data staging coordination

» Topology-aware server/aggregator placement - JL Colaboration with E. Jeannot, F.
Tessier (INRIA), V. Vishnavath (ANL)

» Multiple stage coordination (aggregation — burst buffer — file system)

» Load prediction based on Omnisc’lO (Mathieu Dorrier — ANL)

» Adaptive buffering in parallel applications workflows (Decaf project)

» Adopt Global Information Bus from Argo and Hobbes (Beacon, Exposé)
» Need for sub-second monitoring and notification

» Exploit locality in workflows
» Load-aware placement
» Tradeoff locality — load balance

» New applications? New architectures? New coordination scenarios?

30 Florin Isailaetal, ANL & UC3M — CLARISSE: Reforminc e NSRS RS

AAAAA u
| m

Thank you

ARCOS B
i

- Conclusions - autotuning

» Automatic parameter configuration

»

4
4

Machine learning and hybrid models approaches outperform the default values in
most cases

Hybrid models higher robustness to noise than pure machine learning
Hybrid model do not require application reruns

» Factors that limit efficiency of the I/O stack optimization

4
4
4

POSIX consistency semantics: File locking
File system noise

The lack of information about the state of storage hierarchy (e.g. cached versus
non-cached)

Performance predictability needs to improve

s Scale-down number of servers

- O (1 appliCatiOn)

Aggregate write throughput for Aggregate write throughput for
1920 processes 3840 processes

0 & 8000
& 8000 a 1

= 7000 - < 7000 -
i
£ 5000 g

£ 2

E T T T T T T T T 1 d;, T T T T T T T T 1
‘3 128 120 112 104 96 88 80 72 64 g 256 240 224 208 192 176 160 144 128
[e)] (]

3 5

[e)] [e)]

o <

Number of servers Number of servers

Aggregate write throughput for Aggregate write throughput for
7980 processes 15360 processes

8000 'w

12000
10000 -
8000 T 1

1024 960 896 832 768 704 640 576 512
Number of servers

512 480 448 416 384 352 320 288 256
Number of servers

ggregate write throughput (MB/s)
AN
o
o
o
ggregate write throughput (MB/s)

w
w

ARCOS ¥ |

FEow Dynamic removal of loaded server

» Assumes the availability of a load detection mechanism
» One application process detects a loaded server
» Notifies the application controller

» Application controller informs all node controllers and ask them to prepare to
start a new epoch with less servers

» Node controller
» Decides the last operations to be executed from the current epoch
» Suspends all operation from the future epoch
» Updates the server map
» Notifies the application controller
» Application controller ask all nodes to start a new epoch

» Each node controller resumes the suspended operations if any

ARCOS

F o Conclusions - coordination

4

Data staging coordination

v

Separation of data and control

v

Hierarchical controlling

v

Significant benefits
» Load/Fault aware sever-scale down
» Parallel 1/0O scheduling

Scalable load and fault monitoring is required

v

ARCOS

- Conclusions — data locality

Integration Swift/T - Hercules
Substantially improves the throughput over shared file systems
I/0 performance scales up with the number of application nodes

Exploit data locality in workflows

Less sensitive to file system noise and contention

Vesta Blue Gene/Q system at ANL

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbit/sec 6.0 Gbit/sec

|

2048 compute nodes 1.6 GHz 16
cores 16GB RAM

5D torus network interconnecting
compute nodes

1 1/0 node per 32 GPFS 3.5

compute nodes Data: 40 NSD SATA drives
Client (I/O node) Max disk throughput: 250 MB/s
cache: 4GB (cache 1000 MB/s)

Block size: 8MB

