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® Current problems of storage /O software
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Maps application abstractions
onto storage abstractions (e.g.:

HDF5, ParalleINetCDF)
Reduces the number of file system

calls by optimizations like collective
I/O (e.g.: MPI-10)

Offloads I/O functionality from
compute nodes (e.g.: Mercury,
|OFSL)

Offer a global name space and high
performance storage access (e.g.:
GPFS, Lustre, PVFS)

Block and storage object devices

» Optimization: complex stack, deep distributed storage hierarchy

» Coordination: poor state of programmable control mechanisms are not available (e.g., for
data staging, dynamic load balancing, resilience)

» Exploit data locality
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» Optimization: Model-based autotuning of collective I/O

» Coordination: Data staging coordination

» Exploit data locality: Improving the scalability and
performance of the Swift workflow language by leveraging
data locality through Hercules



®# #  Parallel /O tuning ‘)

» Huge parameter space of the storage /O software stack

» Domain knowledge is increasingly harder: software and hardware

complexity
High-Level I/O Library —— Block alignment, chunking, etc.
I/O Middleware I— Collective/independent 1/0O, data sieving, collective buffer size, number of
aggregators, etc.

I/O Forwarding

Parallel File Systems P Striping unit, striping factor, striping layout, caching, prefetching, etc.
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» Model based tuning
» Analytical: Extensive domain stack Architecture

Software

knowledge required: software stack,
architectural characteristics Input S

» Machine learning [Kumar2013, parameters
Yu2012]

Performance
prediction

Performance
models

Application Noise

» Search-based tuning
» Genetic algorithms [Bezhad2013]
» Simulated annealing [Chen2000]

» Hybrid [Bezhad2014]

This work
* Model-based tuning of two-phase-I/O, the most popular collective 1/0O
implementation from ROMIO
« Combination of analytical and machine learning models
» |EEE Cluster 2015 paper
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- Collective I/0

processes collectively write

or read to a file

» Two-phase /O write

Computation and communication for
mapping writes to the file domain

Communication for sending data to
aggregators

Storage 1/O for storing the data to the
file system

»

Phase 1

Aggregators |[AO0| | AT

Phase 2

File system
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Black box model
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¥ Experimental evaluation

» 1OR benchmark: N processes concurrently write and non-overlapping region
to the file system through MPI-10

» MPICH 3.1

» Vesta Blue Gene/Q
» 2048 compute nodes 1.6 GHz 16 cores 16GB RAM

» 5D torus network interconnecting compute nodes

» 11/0O node per 32 compute nodes

v

Client (/0O node) cache: 4GB
» GPFS 3.5: Block size: 8MB, 40 NSD SATA data drives (Max throughput: 250 MB/s)

» Benchmark for performance models: ALCF MPI benchmark
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FEls Machine learning model

» Black box models and performance models

» linear regression, neural networks, support vector machines, random forests, and cubist

» Selected the model with best RMSE and R?

» Data set:

» Black box model: 297 points
» Processes: 2048 (128 nodes on 16 cores), 4196, and 8392
» Transfer sizes/core (MB): 1, 2, 4, 8,16, 32, 64, 96, 128, 192, 256
» Collective buffer size (MB): 8, 16 (default), 32
» Number of aggregators per 128 nodes: 40, 136, 520 (default)
» Performance models
» Alltoall: : 51 points for 2,048, 4,096, and 8,192 ranks and for message sizes
between 1 byte and 256KB.

» Alltoallv: 1,044 points for distributing message sizes between 1 byte and 64 MB
(in powers of 2) for subsets of 2,048, 4,096, and 8,192 ranks.

» Allreduce: 57 points for 2,048, 4,096, and 8,192 ranks and for message sizes
between 4 bytes and 1 MB.

» POSIX: 567 points for various sizes and various subsets of 2,048, 4,096, and
8,192 ranks.
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e Comparison among various approache

Speedup of various approaches over default
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ol Impact of noise

Speedup of hybrid over default
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» Optimization: Model-based autotuning of collective 1/O

» Coordination: Data staging coordination

» Exploit data locality: Improving the scalability and
performance of the Swift workflow language by leveraging
data locality through Hercules
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P Data staging challenges

v

Concurrent parallel data flows

» Lack of data staging coordination
-1 Among applications
-1 Between applications and the system

v

Increasing storage hierarchy

Lack of standards for dynamic monitoring of large scale infrastructures (e.g.
load, faults)

v

v

Coupled control and data mechanisms

Goal: offer novel mechanisms for data staging coordination to improve
» Load balance

» Resilience

» Parallel /0O scheduling

v
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P Coordination approach : CLARISSE lib

v

Decouple the data and control paths

v

Data-path: abstractions used to implement data access operations

» Collective I/0O
» 2 implementation: view based I/O, list-IO (can be used as both server-based 1/0
and client-based 1/0O)

v

Control path: Based on a publish/subscribe substrate (e.g. Beacon)

» Processes can subscribe to events having certain properties
» Associate call-back
» Wait for an event
» Check for the arrival of an event

Hierarchical control

» Global controller

» Application controller

» Node controller

» All nodes participate in control

v
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CLARISSE hierarchical control infrastru
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CLARISSE hierarchical control infrastru
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ol Load injection at 1 server (1 application

Aggregate write throughput for injecting load on one
server (one operation of 30 Gbytes)
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Dynamically scaling-down

Write time (10 operations, 3840 processes, 256/255 servers)

Not removed loaded server

Removed loaded server

Detect loaded server
Reconstruct server map
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Dynamically scaling-down

Write time (10 operations, 15360 processes, 1024/1023 servers)

Not removed loaded server

Removed loaded server
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4

Several applications share

v

The application controller notifies the global controller

v

The global controller schedules the next application to be run

v

Several policies possible
» FCFS evaluation
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FCFS scheduling versus no scheduling

Write timeline for two parallel clients with 3840 processes each -
No scheduling
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» Optimization: Model-based autotuning of collective 1/O

» Coordination: Data staging coordination

» Exploit data locality: Improving the scalability and
performance of the Swift workflow language by
leveraging data locality through Hercules
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» Swift/T: Language and runtime for dataflow applications

(int r) myproc (int i, int 3Jj)

{

int £ = F(1);
int g = G(J);
r = f + g;

}

» F() and G( ) implemented in native code or external
programs

» F() and G( ) run concurrently in different processes

» ris computed when they are both done
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r . Swift/T architecture
user  Swift Gompsen Turbine
program code

| l

l l l l l
engine engine engine engine engine
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load balancing (ADLB) / data services
Leaf tasks Notifications

worker worker worker worker worker
worker worker worker worker worker
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i Problem description

» Load balancer is not locality-aware

» Tasks communicate through the parallel file system
(bottleneck)

» Objectives:

» Improve the performance of inter-task communication
» Data locality

» Investigate the tradeoffs between data locality and load-balance in
workflow execution
» ldeal load balance, but poor locality
» ldeal data locality, but poor load balance (not all nodes used)
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ol Approach

» Hercules
» persistent key value store based on Memcached
» On-demand deployment of servers on application nodes

» Data placement over the servers
» Consistent hashing (original Memcached)
» Locality-aware (implemented)
» Load-aware (under implementation)
» Capacity aware

» New Swift language constructs
» Soft location: best effort task placement
» Hard location: enforce data locality
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File-copy Strong Scalability - Aggregated Throughput*
1024 files x 256 MBytes (R+W)
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« 320 nodes, 2 x quad core, 36 GB RAM

* Infiniband QDR (4 GB/s) and gigabit ethernet
« GPFS: up to 2500 MB/s
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MapReduce-like WC application
256 files x 256 MB - 64 GB

Total execution time
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=& ®  Ongoing and future work

» Model-based autotuning 1/0
» Performance predictability
» Improve individual models

» Noise
» Load and noise modeling for load detection in data staging (multiple servers)

» Data staging coordination

» Topology-aware server/aggregator placement - JL Colaboration with E. Jeannot, F.
Tessier (INRIA), V. Vishnavath (ANL)

» Multiple stage coordination (aggregation — burst buffer — file system)

» Load prediction based on Omnisc’lO (Mathieu Dorrier — ANL)

» Adaptive buffering in parallel applications workflows (Decaf project)

» Adopt Global Information Bus from Argo and Hobbes (Beacon, Exposé)
» Need for sub-second monitoring and notification

» Exploit locality in workflows
» Load-aware placement
» Tradeoff locality — load balance

» New applications? New architectures? New coordination scenarios?

30  Florin Isailaetal, ANL & UC3M — CLARISSE: Reforminc e NSRS RS
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- Conclusions - autotuning

» Automatic parameter configuration

»

4
4

Machine learning and hybrid models approaches outperform the default values in
most cases

Hybrid models higher robustness to noise than pure machine learning
Hybrid model do not require application reruns

» Factors that limit efficiency of the I/O stack optimization

4
4
4

POSIX consistency semantics: File locking
File system noise

The lack of information about the state of storage hierarchy (e.g. cached versus
non-cached)

Performance predictability needs to improve




s Scale-down number of servers
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FEow Dynamic removal of loaded server

» Assumes the availability of a load detection mechanism
» One application process detects a loaded server
» Notifies the application controller

» Application controller informs all node controllers and ask them to prepare to
start a new epoch with less servers

» Node controller
» Decides the last operations to be executed from the current epoch
» Suspends all operation from the future epoch
» Updates the server map
» Notifies the application controller
» Application controller ask all nodes to start a new epoch

» Each node controller resumes the suspended operations if any
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F o Conclusions - coordination

4

Data staging coordination

v

Separation of data and control

v

Hierarchical controlling

v

Significant benefits
» Load/Fault aware sever-scale down
» Parallel 1/0O scheduling

Scalable load and fault monitoring is required

v
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- Conclusions — data locality

Integration Swift/T - Hercules
Substantially improves the throughput over shared file systems
I/0 performance scales up with the number of application nodes

Exploit data locality in workflows

Less sensitive to file system noise and contention




Vesta Blue Gene/Q system at ANL

BG/Q Optical QDR InfiniBand Serial ATA
2x 16 Gbit/sec 32 Gbit/sec 6.0 Gbit/sec

|

2048 compute nodes 1.6 GHz 16
cores 16GB RAM

5D torus network interconnecting
compute nodes

1 1/0 node per 32 GPFS 3.5

compute nodes Data: 40 NSD SATA drives
Client (I/O node) Max disk throughput: 250 MB/s
cache: 4GB (cache 1000 MB/s )

Block size: 8MB




