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Argonne: Vital part of DOE National Laboratory System
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Computing, Environment, and Life Sciences
Directorate: Four Divisions

Argonne Leadership Biosciences
Computing Facility Division |

Environmental
Science Division

Mathematics and Computer
Science Division And three institutes and facilities
——  ARM Climate Research Facility

« Computation Institute

* Institute for Genomics and Systems
Biology




Mathematics and Computer Science
Division Strategic Areas

Extreme Computing: exploring new approaches to
system software, fault tolerance, and innovative
programming models for next-generation computers

Big Data: formulating novel techniques for managing,
storing, analyzing, and visualizing the enormous
amounts of data produced by leadership-class
computers and large experimental facilities

Applied Mathematics: formulating rigorous theory
leading to fast algorithms, deployed in software on
leading-edge computing platforms

Applications: working with scientists and engineers
to apply our advanced algorithms and tools to
applications critical to our society, such as life science,
climate change, materials, and energy systems
simulations




Mira vs. Aurora

Peak Performance

Number of Nodes

High Bandwidth On-Package Memory, Local Memory,
and Persistent Memory

High Bandwidth On-Package Memory Bandwidth

Interconnect Aggregate Node Link BW

Interconnect Bisection Bandwidth

File System Capacity
File System Throughput

Peak Power Consumption

FLOPS/watt
Facility Area

10 PF
49,152

786 TB

2.5 PB/s

2 PB/s
24 TB/s

26 PB

300 GB/s
4.8 MW

2.1 GF/watt
1,536 sq. ft.

180 PF
>50,000

>7 PB

n/a

n/a

n/a

>150 PB

>1 TB/s

13 MW

>13 GF/watt

~3,000 sq. ft.

18x
Similar
8.9x
Significantly
higher
Higher

Significantly
higher

5.8x
3.3x
2.7x
6.2X
2X
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\.___________________
History: 1/0 research via prototyping

1996 2000 2004 2008

1 1 1 1 1 1 1 1 1 : >

PVFS ROMIO PnetCDF BMI IOFSL
PVFS2  LogFS

1/0 Middleware organizes
accesses from many processes,

Data Model Libraries . )
especially those using

map application abstractions Application collective
onto storage abstractions and /O
provide data portability. A‘ Data Model Support ’
MPI-IO (ROMIO), PLFS,
HDF5, Parallel netCDF, LOGFS

ADIOS Transformations

1/0 Forwarding transforms
I/O from many clients into

Parallel file system

maintains logical file model and Parallel File System fewer, larger request; reduces
provides efficient access to lock contention; and bridges
data. I/O Hardware

between the HPC system and
PVFS, Gfarm, GPFS, Lustre external storage.

IBM ciod, IOFSL, Cray DVS
‘) 7
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Darshan

Goal: collect 1/0 patterns of applications running on production
HPC platforms

= Majority of applications — need to integrate into the build
environment of the systems.

= Without perturbation — bounded use of resources (memory,
network, storage); no communication or /O prior to job
termination; compression.

= Adequate detail — basic job statistics; file access information

from multiple APls.



Darshan Specifics

= Runtime library for characterization of application I/0

— Instrumentation is inserted at build time (for static executables) or at

run time (for dynamic executables)

— Captures POSIX I/O, MPI-I0O, and limited HDF5 and PNetCDF functions
= Minimal application impact

— Bounded memory consumption per process

— Records strategically chosen counters, timestamps, and histograms

— Reduces, compresses, and aggregates data at MPI_Finalize() time

= Compatible with IBM BG, Cray, and Linux environments
— Deployed system-wide or enabled by individual users
— Instrumentation is enabled via software modules, environment
variables, or compiler scripts
— No source code modifications or changes to build rules
— No file system dependencies

= Enabled by default at NERSC, ALCF, and NCSA

http://www.mcs.anl.gov/research/projects/darshan
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N
J Ob L ev el | jobid: 149563 | uid: 6729 | nprocs: 786432 | runtime: 2751 seconds |

Average /O cost per process 1/O Operation Counts
100 3.5e+06
W 80| 3e+06
£ n
< & 2.5e+06
Seof
S °
g a 2e+06
£ 40 <
I T 1.5e+06
& e
20 2 16406
o
0 500000
Read Write Open Stat Seek Mmap Fsync
Write nessssen
Metadata s POSIX m— MPI-10 Coll. s
Other (incjlling application compute) m— MPI-IO Indep. sessssn
I/O Sizes I/O Pattern
250000 [ 250000
5200000 3 200000 |
2 @
g 150000 §
< < 150000 -
= <
o —
= 10000 g
€ £ 100000 -
Q 13
© 5 &
50000 |
V. 7, 7 7 7 v 7 7
)k, o g, . 7y, 0, 7
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* % ,004_ A ’o%f"’o Read Write
Total| mmmmm  Consecutive
Read mmmmm Write mwssen Sequential messssen
File Count Summary
o . . ost Common Access Sizes (estimated by I/0 access offsets)
A) Of ru nt“ | Ie N I / O access size | count type | number of files | avg. size | max size
16777216 210977 total opened 17 199G 1.6T
8388608 9866 read-only files 1 2.0K 2.0K
256 2598 write-only files 13 260G 1.6T
A . h . 68 9 read/write files 0 0 0
CceSS Slze |St0gra| I l | created files 13 260G 1.6T
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..
System Level: Aggregated View of Data Volume

Job size vs. data volume for Mira BG/Q system in 2014
(~128,000 logs as of October, ~8 PiB of traffic)

262144 | © — -
65536 |- L ; 1~ Biggest by volume:
16384 | S | 300TiB
S SR Bi le:
4096 | ggest by scale
768K processes
1024 | P .
SRR N Probably some scaling
256 A R _
: co b 1 g experiments?
64 | S A A ; _
T N M : Most jobs use power of 2
16 - , i " M E
SR i 4 0 SR R numbers of processes on
V% S N I O A R ,
S A L I : Mira
B R N R -
] E i { :j ! : : I c

7 4 7, 6. 7, % 7, 6
& S% <& 0, Yog 65, "3, 6> e,

MPI ranks



System Level: I/0 Mix

Matching large scale
simulations of dense
suspensions with
empirical measurements
to better understand
properties of complex
materials such as
concrete.

1000

—
o
o

Number of TiB

10

Processing large-scale seismographic
datasets to develop a 3D velocity
model used in developing earthquake
hazard maps.

Comparing simulations of

wiite =mmm  turbulent mixing of fluids
Read s

with experimental data to
advance our understanding
of supernovae explosions,
inertial confinement fusion,
and supersonic combustion.

Top 10 data producer/consumers instrumented with Darshan over the month of July, 2011
on Intrepid BG/P system at Argonne. Surprisingly, three of the top producer/consumers

almost exclusively read existing data.

13




Sharing data with the community

= Conversion utilities can anonymize and re-compress data

= Compact data format in conjunction with anonymization
makes it possible to share data with the community in bulk

= The ALCF |I/O Data Repository provides access to production
logs captured on Intrepid

= Logs from 2010 to 2013, when machine was retired

ALCF 1/0 Data Repository Statistics

Unique log files 152,167
Core-hours 721 million
instrumented

Data read 25.2 petabytes
Data written 5.7 petabytes

http://www.mcs.anl.gov/research/projects/darshan/data/
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Darshan Future(s)

= Mining Darshan data

Ongong work under
M. Winslett (UIUC)

= Reconstructing workloads

How well can we reproduce the
|/O operations from the
compressed Darshan log?

= Refining Darshan

Supporting new interfaces
Capturing more information
(e.g., I/O patterns)

More compact grammar-based
representation of logs

Mira: Jobs I/O Throughput

/
System peak - 240 GB/s ‘ /

1TB/s

1% Peak

S16Bls
Q_ Jobs Count
- 0-10
g’ B 10- 100
81 MB/s =100-500
500 - 1k
|'E 1k - 5k
5k - 10k
O o
—~ 1KB/s -***
® /
1Bls+— //\\0

1B 1 KB 1 MB 1GB 1TB 1PB
Number of bytes transferred

Thanks to Huong Luu (UIUC) for providing this
figure.
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CODES: Enabling Co-Design of Exascale Storage
Architectures and Science Data Facilities

The goal of the CODES project is use highly i Workflows
parallel simulation to explore the design of N | Workloads
exascale storage architectures and ( | i
distributed data-intensive science facilities. | services )
= Set of models, tools, and utilities intended Protocols

to simplify complex model specificationand i

development Hardware

— Commonly-used models (e.g., networking) N y

— Facilities to inject application workloads
= Using these components to understand [ Simulation (PDES) }

systems of interest to DOE ASCR

@ Rensselaer



CODES simulations

= Based on ROSS (Rensselaer Optimistic Simulation System)
developed by Rensselaer Polytechnic Institute

= HPC networks

— N-ary k-cube network (IBM Blue Gene, Cray XT5 and Cray XE6 series.)
— Dragonfly (Cray XC30 system.)

= Burst buffer architectures

— N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn. On the role of burst buffers in
leadership-class storage systems. In Proceedings of the 2012 IEEE Conference on Massive Data Storage (MSST), Pacific
Grove, CA, April 2012.

= Resource and Job Management in Data Analytics
Environments

— N. Liu, X. Yang, X. Sun, J. Jenkins, R. Ross. YARNsim: Hadoop YARN Simulation System. Accepted to CCGrid 2015.

= Understanding Behavior of Metagenomics Workflows on
Multi-Cloud Systems

— W.Tang, J. Jenkins, F. Meyer, R. Ross, R. Kettimuthu, L. Winkler, X. Yang, T. Lehman, and N. Desai. Data-Aware Resource
Scheduling for Multicloud Workflows: A Fine-Grained Simulation Approach. In Proceedings of CloudCom 2014.
December, 2014.

http://www.mcs.anl.gov/research/projects/codes/
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b

Aesop Programming Language

Goal: Increase team productivity by making programming of
distributed services easier.

= New programming language (+ support libraries)
— Based on C with concurrency extensions
— Designed for implementing distributed network services
— Aims to be highly productive — sequential flow while programming
— Aims to be fast — concurrent execution

= |Implemented as Source-To-Source translator
— Translator written in Haskell, injects macro calls into the source.
— Outputs plain C

= Gitrepositoryatgit://git.mcs.anl.gov/aesop

D. Kimpe, P. Carns, K. Harms, J. M. Wozniak, S. Lang, and R. Ross. AESOP: Expressing concurrency in high- performance
system software. In Proceedings of the 7th IEEE International Conference on Networking, Architecture and Storage (NAS),
June 2012.

20



Mercury RPC Framework "g:rne HDF Group

Mercury is an RPC system for use in the development of high
performance system services. Development is driven by the
HDF5 Group with Argonne participation.

= Portable across systems and network technologies

= Builds on lessons learned from IOFSL, Nessie, Inet, and others

= Efficient bulk data movement to complement control
messages

Metadata (unexpected
T T + expected messaging) o
RPC proc! » RPC proc
|

-— o = \ — o —
Bulk Data (RMA transfer)

§ §

Network Abstraction Layer

http://www.mcs.anl.qgov/research/projects/mercury/
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Decaf Motivation

= All science problems have multiple connected steps, i.e.,
workflows.

* Challenging to automate these workflows on the current HPC
infrastructures.

Example of a specific workflow in cosmology (HACC)

Particles

ID Densit

2D Densit‘

; 23

Tessellation




Decaf

= Decaf: software that expands one workflow link into a

dataflow.
= Dataflow: one link in the workflow graph expanded to express

control and data movement.
= |tincludes data selection, pipelining, buffering, and resilience.

Expanding one link in a Producer
workflow into a OO0
dataflow consisting of | Pipeliner
reusable primitives. |

Tigh Coupling
Producer, consumer, @ A
and dataflow are all Consumer

parallel tasks.

Consumer

Original Workflow New Dataflow 24



Swift/T workflow language

= Swift/T: Language and runtime for dataflow applications

(int r) myproc (int i, int 3Jj)

{
int £ = F(1);
int g = G(3J);
r = f + g;

}

» F()and G() implemented in native code or external programs
» F()and G() run concurrently in different processes

» ris computed when they are both done

25



Data locality in Swift/T

= Joint work with University Carlos Il (Spain)

= Problems

— Load balancer is not locality-aware

— Tasks communicate through the parallel file system (bottleneck)
= QObjectives:

— Improve the performance of inter-task communication

* Data locality
— Investigate the tradeoffs between data locality and load-balance in
workflow execution

26



Approach

= Hercules

— persistent key value store based on Memcached

— On-demand deployment of servers on application nodes
= Data placement over the servers

— Consistent hashing (original Memcached)

— Locality-aware (implemented)

— Load-aware (under implementation)

— Capacity aware
= New Swift language constructs

— Soft location: best effort task placement
— Hard location: enforce data locality

Exploiting data locality in Swift/T workflows using Hercules. Francisco Rodrigo Duro, Javier Garcia Blas, Florin Isaila, Jesus
Carretero, Justin M. Wozniak, and Robert Ross. Proc. NESUS Workshop 2014 .

27




Fusion Linux cluster

File-copy Strong Scalability - Aggregated Throughput*
1024 files x 256 MBytes (R+W)

— ;*
8 16 32 64 128
# Worker nodes (x8 ppn)
e====GPFS ====HERCULES ===HERCULES LOCALITY

320 nodes, 2 x quad core, 36 GB RAM

Infiniband QDR (4 GB/s) and gigabit ethernet
GPFS: up to 2500 MB/s

28
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CLARISSE: Data staging coordination

= Joint work with University Carlos Il (Spain)

= Challenges
— Concurrent parallel data flows
— Lack of data staging coordination
— Among applications
— Between applications and the system
— Increasing storage hierarchy
— Current HPC Storage 1/0 stack difficult to optimize

= Goal: offer novel mechanisms for data staging coordination to

improve

— Load balance

— Resilience

— Parallel I/0 scheduling

F. Isaila, Garcia, J., Carretero, J., Ross, R. B., and Kimpe, D., “Making the Case for Reforming the 1/0O Software Stack of
Extreme-Scale Systems”, EASC 2013. Edinburgh, Scotland, 2013.
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CLARISSE

= Novel data staging library
= Separated data and control flow (SDN-like)

= Control backplane

— On top of a pub/sub substrate (e.g. Beacon communication backplane)
— Used for

* |/O scheduling

* Load balance

* Resilience

* Multiple stage coordination (e.g. : aggregation, storage 1/0)
= Data path

— Collective and independent 1/0

— Control backplane used for coordination
— Adaptive buffering

— Support for parallel workflows (Decaf)

31




CLARISSE hierarchical control

infrastructure
Application 1 Application 2
A Node Controller e ) ﬂ_ ﬂ_ ) ﬂ_( ﬂ_
. Application Controller T 1T 1 T 1
. Global Controller . ‘ . ‘ “ “

”'AAAAAAAA}

L

s

{TvP
S
{H He

Shared servers

|/O nodes k )

File system ﬁ

A 52



Dynamically eliminating loaded server

Write time (10 operations, 15360 processes, 1024/1023 servers)

0 20 40 60 80 100 120 140 160

Detect loaded server New epoch with fewer servers
Reconstruct server map



FCFS scheduling versus no scheduling

Write timeline for two parallel clients with 3840 processes each - No

scheduling
[] [l [ [l [] [l
[l [] [] [] N

50

Write timeline for two parallel clients with 3840 processes each - FCFS

100

scheduling

150

150

200

200

T ,.

250

250

34



Outline

= A bit of history

= |/O characterization

= Simulation

" Tools

= Scientific workflows

= Data staging coordination
= Parallel I/O autotuning

35



Parallel I/0 tuning motivation

= Huge parameter space of the storage I/O software stack
= Domain knowledge is increasingly harder: software and

hardware complexity

High-Level I/O Library — Block alignment, chunking, etc.
|/O Middleware I— Collective/independent 1/0O, data sieving, collective buffer size, number of
aggregators, etc.

|/O Forwarding

Parallel File Systems P Striping unit, striping factor, striping layout, caching, prefetching, etc.




Modeling ROMIO collective 1/0

— e - o o oy, —-— e . - -y — o oy,

li’t\nalytical models® [ Data-driven > [ Analytical |
| for operation I I performance I model 1
| counts and sizes | | models I [
I I

I

Analytical \"_|>[ Performance
nodes (n)_>| COMMUNICatioN [l COMMunication

aCCESS SIZe (S,)mmp models |_|>\ models

- a
aggregators (n ) p- 4 -
b siz o 'l Analytical | Performance
o SiZe (Sq) e >
1 storage — storage

| m | I
RN odels /7_‘>\\ models

IPerformance
Iprediction

Application-agnostic data

Operation
benchmarks

F.Isaila, P. Balaprakash, S. Wild, D. Kimpe, R.Latham, R.Ross, P.Hovland. Collective I/O tuning using analytical and machine
learning models. In Proceedings of IEEE Cluster September 2015.
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Conclusion

= Storage is part of a high end computing ecosystem.

= Historically storage I/O has been a second-class
citizen.

" Big data requires global solutions

— Fundamental redesign of the software storage 1/O stack

— Integration with resource management, scheduler, and
workflow systems

— Software defined solutions
" |ntegration of big data and HPC stacks
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