

CLARISSE:	 A	 run-‐.me	 middleware	 for	 coordina.ng	
data	 staging	 on	 large	 scale	 supercomputers	 	

Florin Isaila

ANL & University Carlos III

Collaborators: Phil Carns (ANL), Jesus Carretero (UC3M), Javier Garcia (UC3M), Kevin
Harms (ANL), Rob Latham(ANL), Tom Peterka (ANL), Rob Ross (ANL)

Introduction

}  Scientific applications (climate, genomics, high energy
physics, astronomy etc.) ingest, generate, process
increasingly larger data sets

}  Future high scale supercomputers need to deal efficiently
with huge amounts of data

}  Current I/O software stack needs to evolve in order to
meet the oncoming scalability challenges

2 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

I/O	 Forwarding	

Parallel	 File	 Systems	

High-‐Level	 I/O	 Library	

I/O	 Middleware	

Applica.on	

Compute	 nodes	

I/O	 nodes	

Storage	 nodes	

Back-‐end	 storage	

Maps	 applica.on	 abstrac.ons	
onto	 storage	 abstrac.ons	 (e.g.:	
HDF5,	 ParallelNetCDF)	
Reduces	 the	 number	 of	 file	 system	
calls	 by	 op.miza.ons	 like	 collec.ve	
I/O	 (e.g.:	 MPI-‐IO)	
Offloads	 I/O	 func.onality	 from	
compute	 nodes	 (e.g.:	 Mercury,	
IOFSL)	

Offer	 a	 global	 name	 space	 and	 high	
performance	 storage	 access	 (e.g.:	
GPFS,	 Lustre,	 PVFS)	

Block	 and	 storage	 object	 devices	 Storage	 drivers	 	

Current problems of storage I/O software stack

3

}  Optimization: complex stack, deep distributed storage hierarchy

}  Coordination: poor state of programmable control mechanisms are not available (e.g., for
data staging, dynamic load balancing, resilience)

}  Exploit data locality
Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Data flow in Blue Gene/Q
App 1

4

Data flow in Blue Gene/Q
App 1 App 2

5

Data staging challenges

}  Concurrent parallel data flows
}  Lack of data staging coordination

¨  Among applications
¨  Between applications and the system

}  Increasing storage hierarchy

}  Storage I/O optimizations are local: Difficult to perform global optimizations

}  Cross-layer control mechanisms are not available (e.g., for data staging,
dynamic load balancing, resilience)

}  Lack of standards for dynamic monitoring of large scale infrastructures (e.g.
load, faults)

}  Coupled control and data mechanisms

}  Goal: offer novel mechanisms for data staging coordination to improve
}  Load balance
}  Resilience
}  Parallel I/O scheduling

6

Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work

7 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

CLARISSE overview

}  Cross-Layer Abstractions and Runtime for I/O
Software Stack (CLARISSE)
}  A 3-year project started October 2013
}  European “Marie Curie” International Outgoing

Fellowship
}  Collaboration between ANL and UC3M (Spain)

}  Goals
}  Novel mechanisms for global data staging coordination to

improve
}  Load balance, resilience, parallel I/O scheduling, locality exploitation

}  Improve programmability
}  Facilitate extendability

8 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

CLARISSE overview
}  Decouple the data and control

planes
}  Data plane
}  Control plane
}  Policy

}  Cross-layer abstractions and
run-time
}  Facilitate the flow of control and

data across the I/O stack

9 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Policies

Control plane
Data plane

Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work

10 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

CLARISSE overview

}  Data plane
}  Design novel abstractions and

mechanisms for supporting data flow
optimizations
}  Data aggregation (e.g., collective

I/O)
}  buffering / caching, data staging
}  load balance
}  data locality (e.g. in-situ and in-

transit data processing)
}  Parallel data-flows based on the

these abstractions

11 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

CLARISSE data plane abstractions

}  Five main abstractions
}  Targets
}  Distributions
}  I/O contexts
}  I/O tasks
}  Task queues

}  Objectives
}  Represent the storage I/O activity in terms of these abstractions
}  Offer a logically centralized view of these abstractions

}  Probably not realistic to expect to have these
abstractions present at all stack layers

12 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

CLARISSE abstractions

13 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Target 1:
app. memory

Target 4:
netw. buffer

Distribution 1 Outgoing task queue

Incoming task queue

I/O tasks

Target 3:
remote file

Task
Execution

Engine

Local resource manager

I/O context

Target 2:
file view

Process

Distribution 2

Distribution 3

Abstractions for the I/O stack
}  Targets

}  Virtual linear spaces
}  Memory, files, storage objects, network buffers
}  put/get interface

}  Distributions
}  Mappings between targets
}  Mapping functions from non-contiguous regions to a contiguous region
}  Composing the functions for arbitrary non-contiguous to non-contiguous

mappings

14

Distribution 1

Distribution 2

F(x)

G(y)

G-1(F(x))

Target 1

Target 2

Target 3

Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

I/O tasks and task queues

}  I/O task
}  I/O related set of actions between a local I/O context and a remote

I/O context
}  Example of I/O tasks

}  Redistribute data between memory application and network
buffer

}  Run custom defined computation (e.g. Code-on-Demand of
EVPath)

}  Send/receive data from remote nodes, file/storage systems

}  Task queues
}  Queues containing the tasks to be processed by the task engine
}  Control exposed to the control backplane

15 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

I/O contexts

}  Local to a node

}  Link between one local
target and N remote targets
}  Local representation of

vertices in the data flow
graph

}  Two I/O task queues
}  Incoming
}  Outgoing

}  Assigned system resources
}  E.g. memory, cores

}  Task execution engine
}  Execute task actions
}  Enforce an I/O scheduling

policy
16 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work

17 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Applica.on	 1	 Applica.on	 2	

Shared	 servers	

I/O	 nodes	

File	 system	

Node	 Controller	

Applica.on	 Controller	

Global	 Controller	

CLARISSE hierarchical control infrastructure

CLARISSE control backplane

}  Control path: Based on a publish/subscribe substrate (e.g. Beacon)
}  Processes can subscribe to events having certain properties

}  Associate call-back
}  Wait for an event
}  Check for the arrival of an event

}  Hierarchical control
}  Global controller
}  Application controller
}  Node controller
}  All nodes participate in control

19

Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work

20 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Deployment

}  A process can be:
}  A CLARISSE server (a process that serves remotely data access calls)
}  A CLARISSE client (a process that issues data access calls)
}  Both a server and a client

}  Three combinations of parallel servers / parallel clients
1.  Coupled client-server

}  Client and server run in the same process (multi-threaded or not)
}  Locally shared memory

2.  Intra-application decoupled
}  One parallel application
}  Separate client and server processes

3.  Inter-application decoupled
}  Connect different parallel applications or applications to parallel storage systems
}  Construct parallel workflows

21 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Parallel
Program 2

Clarisse deployment

22

Client

Process

Client

Server
Process

Client

Process

Client

Process

Parallel
Program

Client
Process

Server
Process

Parallel
Program

Client
Process

Client
Process

Client
Process

Server
Process

Server

Client
Process

Server
Process

Parallel
Program 1

Client
Process

Client
Process

Client
Process

Server
Process

1.  Coupled client/
server

2. Intra-application
decoupled

3. Inter-application
decoupled

Parallel
Program 2

Clarisse parallel data flow example

Client 1

Process

Client 1

Server 2

Process

Client 1

Process

Client 1

Process

Parallel
Program 3

Server 2

Client 1

Process

Server 1

Process

Parallel
Program 1

Client 1

Process

Client 1

Process

Client 1

Process

Server 1

Process

Application 1

Stager

Application 2
Collective I/O

Client 2 Client 2 Client 2 Client 2

Client 1

Process

Server 2

Client 2

File system

23

Parallel
Program 2

Clarisse parallel data flow example

Client 1

Process

Client 1

Server 2

Process

Client 1

Process

Client 1

Process

Parallel
Program 3

Server 2

Client 1

Process

Server 1

Process

Parallel
Program 1

Client 1

Process

Client 1

Process

Client 1

Process

Server 1

Process

Application 1

Stager

Application 2
Collective I/O

Client 2 Client 2 Client 2 Client 2

Client 1

Process

Server 2

Client 2

File system

Control
backplane

24

Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work

25 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Case studies

2048 compute nodes 1.6 GHz 16
cores 16GB RAM
5D torus network interconnecting
compute nodes

26

BG/Q Optical
2x16 Gbit/sec

QDR InfiniBand
32 Gbit/sec

Serial ATA
6.0 Gbit/sec

Gateway nodes
run parallel file system
client software and
forward I/O operations
from HPC clients.

384 16-core PowerPC
A2 nodes with 16 Gbytes
of RAM each

Commodity
network primarily
carries storage traffic.

QDR Infiniband
Federated Switch

Storage nodes
run parallel file system
software and manage
incoming FS traffic
from gateway nodes.

SFA12KE hosts VM
running GPFS servers

Enterprise storage
controllers and large racks
of disks are connected via
InfiniBand.

16 DataDirect SFA12KE;
560 3 Tbyte drives + 32
200 GB SSD; 16
InfiniBand ports per pair

GPFS 3.5
Data: 40 NSD SATA drives
Max disk throughput: 250 MB/s
(cache 1000 MB/s)
Block size: 8MB

1 I/O node per 32
compute nodes
Client (I/O node)
cache: 4GB

}  Dynamic removal of loaded server

}  Parallel I/O scheduling

}  Vesta Blue Gene/Q

Applica.on	 1	 Applica.on	 2	

Shared	 servers	

I/O	 nodes	

File	 system	

Inject	 load	

Node	 Controller	

Applica.on	 Controller	

Global	 Controller	

CLARISSE hierarchical control infrastructure

Load injection at 1 server (1 application)

28

0	

2000	

4000	

6000	

8000	

10000	

12000	

0	 1	 2	 4	 8	 16	 32	 64	 128	 256	 512	

Ag
gr
eg
at
e	
w
rit
e	
th
ro
ug
hp

ut
	 (M

B/
s)
	

Injected	 load	 per	 server	 opera;on	 (microseconds)	

Aggregate	 write	 throughput	 for	 injec;ng	 load	 on	 one	
server	 (one	 opera;on	 of	 30	 Gbytes)	

1920	 processes	

3840	 processes	

7680	 processes	

15360	 processes	

Scale-down number of servers  
(1 application)

29

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

128 120 112 104 96 88 80 72 64

A
gg

re
ga

te
 w

rit
e

th
ro

ug
hp

ut
 (M

B
/s

)

Number of servers

Aggregate write throughput for
1920 processes

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

256 240 224 208 192 176 160 144 128

A
gg

re
ga

te
 w

rit
e

th
ro

ug
hp

ut
 (M

B
/s

)

Number of servers

Aggregate write throughput for
3840 processes

0

2000

4000

6000

8000

10000

12000

512 480 448 416 384 352 320 288 256

A
gg

re
ga

te
 w

rit
e

th
ro

ug
hp

ut
 (M

B
/s

)

Number of servers

Aggregate write throughput for
7980 processes

0
2000
4000
6000
8000

10000
12000
14000

1024 960 896 832 768 704 640 576 512

A
gg

re
ga

te
 w

rit
e

th
ro

ug
hp

ut
 (M

B
/s

)

Number of servers

Aggregate write throughput for
15360 processes

Application controller Node 1 Node 2
1. subscribe(SLOW_IO_SERVER)
2. subscribe(IO_SEQ)

4. publish(STOP_IO(1,2, 3))

8. publish(NEW_EPOCH(e))

Node 3

4. publish(SLOW_IO_SERVER (n))

6. publish(IO_SEQ (s1))
7. wait(NEW_EPOCH) 6. publish(IO_SEQ (s2))

7. wait(NEW_EPOCH) 6. publish(IO_SEQ (s3))
7. wait(NEW_EPOCH)

3. subscribe(NEW_EPOCH) 3. subscribe(NEW_EPOCH) 3. subscribe(NEW_EPOCH)

9. Finish pending I/O from previous epochs, reconfigure server map, and start new epoch

Dynamic removal of loaded server

Dynamic removal of loaded server

}  Assumes the availability of a load detection mechanism

}  One application process detects a loaded server

}  Notifies the application controller

}  Application controller informs all node controllers and ask them to prepare to
start a new epoch with less servers

}  Node controller
}  Decides the last operations to be executed from the current epoch
}  Suspends all operation from the future epoch
}  Updates the server map
}  Notifies the application controller
}  Application controller ask all nodes to start a new epoch

}  Each node controller resumes the suspended operations if any

31

Dynamically scaling-down

0 20 40 60 80 100 120 140 160

Removed loaded server

Not removed loaded server

Time(seconds)

Write time (10 operations, 3840 processes, 256/255 servers)

Detect loaded server
Reconstruct server map

New epoch with fewer servers

Dynamically scaling-down

0 20 40 60 80 100 120 140 160

Removed loaded server

Not removed loaded server

Write time (10 operations, 15360 processes, 1024/1023 servers)

Global controller Application 1 Application 2

3. publish(START_IO (1))

4. wait(GRANT_IO)

1. subscribe(START_IO)
2. subscribe(FINISH_IO)

5. publish(GRANT_IO(1))

6. publish(START_IO(2))

7. wait(GRANT_IO)

9. publish(GRANT_IO(2))

8. publish(FINISH_IO(1))

10. publish(FINISH_IO(2))

data shuffle

data shuffle

Parallel I/O scheduling: FCFS

Parallel I/O scheduling

}  Several applications share the same servers

}  The application controller notifies the global controller

}  The global controller schedules the next application to be run

}  Several policies possible
}  FCFS evaluation

35

0 50 100 150 200 250

1

2

Write timeline for two parallel clients with 960 processes each - No
scheduling

0 50 100 150 200 250

1

2

Write timeline for two parallel clients with 960 processes each -
FCFS scheduling

FCFS scheduling versus no scheduling

37

0 50 100 150 200 250

1

2

Write timeline for two parallel clients with 3840 processes each -
No scheduling

0 50 100 150 200 250

1

2

Write timeline for two parallel clients with 3840 processes each -
FCFS scheduling

0 50 100 150 200 250

1

2

Write timeline for two parallel clients with 7680 processes each -
FCFS scheduling

Conclusions

}  CLARISSE: Middleware for data staging coordination
}  Separation of data and control
}  Hierarchical control
}  Significant benefits

}  Load/Fault aware sever-scale down
}  Parallel I/O scheduling

}  Scalable load and fault monitoring is required

38

Ongoing and future work

}  Topology-aware server/aggregator placement - JL
Colaboration with E. Jeannot, F. Tessier (INRIA), V.
Vishnavath (ANL)

}  Multiple stage coordination (aggregation – burst buffer
– file system)

}  Load prediction based on Omnisc’IO (Mathieu Dorrier –
ANL)

}  Adaptive buffering in parallel applications workflows
(Decaf project)

}  Adopt Global Information Bus from Argo and Hobbes
(Beacon, Exposé)

}  Need for sub-second monitoring and notification

39 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Thank you

40 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

I/O	 Forwarding	

Parallel	 File	 Systems	

High-‐Level	 I/O	 Library	

I/O	 Middleware	

Applica.on	

Compute	 nodes	

I/O	 nodes	

Storage	 nodes	

Back-‐end	 storage	

Maps	 applica.on	 abstrac.ons	
onto	 storage	 abstrac.ons	 (e.g.:	
HDF5,	 ParallelNetCDF)	
Reduces	 the	 number	 of	 file	 system	
calls	 by	 op.miza.ons	 like	 collec.ve	
I/O	 (e.g.:	 MPI-‐IO)	
Offloads	 I/O	 func.onality	 from	
compute	 nodes	 (e.g.:	 Mercury,	
IOFSL)	

Offer	 a	 global	 name	 space	 and	 high	
performance	 storage	 access	 (e.g.:	
GPFS,	 Lustre,	 PVFS)	

Block	 and	 storage	 object	 devices	 Storage	 drivers	 	

Current problems of storage I/O stack

41

}  Long path from compute nodes to final storage impacts performance (latency, throughput)

}  Storage I/O optimizations are local: Difficult to perform global optimizations

}  Cross-layer control mechanisms are not available (e.g., for data staging, dynamic load
balancing, resilience)
Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Related work

}  Software Defined Networking (e.g. Open Flow): global control based
on separation of control and data flow

}  I/O Flow (Microsoft Research): A Software Defined Storage
Architecture for virtualized data centers

}  Fast Forward (Intel et al.): redesign of the storage I/O stack

}  Argo (Argonne et al.), Hobbes (Sandia et al.): system software for
exascale based on an OS/Run-time environment

}  Decaf (Argonne): decoupling of tightly coupled workflows

}  In-situ and in-transit processing: Data Spaces (Rutgers), Flexpath
(Georgia Tech), FlowVR (INRIA), Damaris (INRIA), Glean (Argonne)

42 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Blue Gene/Q system at ANL 

Compute nodes 1.6 GHz 16
cores 16GB RAM
5D torus network interconnecting
compute nodes

43

BG/Q Optical
2x16 Gbit/sec

QDR InfiniBand
32 Gbit/sec

Serial ATA
6.0 Gbit/sec

Gateway nodes
run parallel file system
client software and
forward I/O operations
from HPC clients.

384 16-core PowerPC
A2 nodes with 16 Gbytes
of RAM each

Commodity
network primarily
carries storage traffic.

QDR Infiniband
Federated Switch

Storage nodes
run parallel file system
software and manage
incoming FS traffic
from gateway nodes.

SFA12KE hosts VM
running GPFS servers

Enterprise storage
controllers and large racks
of disks are connected via
InfiniBand.

16 DataDirect SFA12KE;
560 3 Tbyte drives + 32
200 GB SSD; 16
InfiniBand ports per pair

GPFS 3.5
Data: 40 NSD SATA drives
Max disk throughput: 250 MB/s
(cache 1000 MB/s)
Block size: 8MB

1 I/O node per 128
compute nodes
Client (I/O node)
cache: 4GB

Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms 43

