

CLARISSE: A run-time middleware for coordinating data staging on large scale supercomputers

Florin Isaila

ANL & University Carlos III

Collaborators: Phil Carns (ANL), Jesus Carretero (UC3M), Javier Garcia (UC3M), Kevin Harms (ANL), Rob Latham(ANL), Tom Peterka (ANL), Rob Ross (ANL)

- Scientific applications (climate, genomics, high energy physics, astronomy etc.) ingest, generate, process increasingly larger data sets
- Future high scale supercomputers need to deal efficiently with huge amounts of data
- Current I/O software stack needs to evolve in order to meet the oncoming scalability challenges

Current problems of storage I/O software stack

- Optimization: complex stack, deep distributed storage hierarchy
- Coordination: poor state of programmable control mechanisms are not available (e.g., for data staging, dynamic load balancing, resilience)
- Exploit data locality

Data flow in Blue Gene/Q

Data flow in Blue Gene/Q

- Concurrent parallel data flows
 - Lack of data staging coordination
 - Among applications
 - Between applications and the system
- Increasing storage hierarchy
- Storage I/O optimizations are local: Difficult to perform global optimizations
- Cross-layer control mechanisms are not available (e.g., for data staging, dynamic load balancing, resilience)
- Lack of standards for dynamic monitoring of large scale infrastructures (e.g. load, faults)
- Coupled control and data mechanisms
- Goal: offer novel mechanisms for data staging coordination to improve
 - Load balance
 - Resilience
 - Parallel I/O scheduling

CLARISSE overview

- CLARISSE data plane
- CLARISSE control plane
- Deployment
- Case studies
- Conclusions
- Future work

7

- Cross-Layer Abstractions and Runtime for I/O Software Stack (CLARISSE)
 - A 3-year project started October 2013
 - European "Marie Curie" International Outgoing Fellowship
 - Collaboration between ANL and UC3M (Spain)

Goals

8

- Novel mechanisms for global data staging coordination to improve
 - Load balance, resilience, parallel I/O scheduling, locality exploitation
- Improve programmability
- Facilitate extendability

- Decouple the data and control planes
 - Data plane
 - Control plane
 - Policy
- Cross-layer abstractions and run-time
 - Facilitate the flow of control and data across the I/O stack

CLARISSE overview

- CLARISSE data plane
- CLARISSE control plane
- Deployment
- Case studies
- Conclusions
- Future work

Data plane

- Design novel abstractions and mechanisms for supporting data flow optimizations
 - Data aggregation (e.g., collective I/O)
 - buffering / caching, data staging
 - Ioad balance
 - data locality (e.g. in-situ and intransit data processing)
- Parallel data-flows based on the these abstractions

Five main abstractions

- Targets
- Distributions
- I/O contexts
- I/O tasks
- Task queues

Objectives

- Represent the storage I/O activity in terms of these abstractions
- Offer a logically centralized view of these abstractions
- Probably not realistic to expect to have these abstractions present at all stack layers

13 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Abstractions for the I/O stack

Targets

- Virtual linear spaces
- Memory, files, storage objects, network buffers
- put/get interface
- Distributions
 - Mappings between targets
 - Mapping functions from non-contiguous regions to a contiguous region
 - Composing the functions for arbitrary non-contiguous to non-contiguous mappings

I/O task

- I/O related set of actions between a local I/O context and a remote I/O context
- Example of I/O tasks
 - Redistribute data between memory application and network buffer
 - Run custom defined computation (e.g. Code-on-Demand of EVPath)
 - Send/receive data from remote nodes, file/storage systems

Task queues

- Queues containing the tasks to be processed by the task engine
- Control exposed to the control backplane

I/O contexts

Local to a node

ARCOS 🗖

- Link between one local target and N remote targets
 - Local representation of vertices in the data flow graph
- Two I/O task queues
 - Incoming
 - Outgoing
- Assigned system resources
 - E.g. memory, cores
- Task execution engine
 - Execute task actions
 - Enforce an I/O scheduling policy

- CLARISSE overview
- CLARISSE data plane
- CLARISSE control plane
- Deployment
- Case studies
- Conclusions
- Future work

CLARISSE hierarchical control infrastructure

Control path: Based on a publish/subscribe substrate (e.g. Beacon)

- Processes can subscribe to events having certain properties
 - Associate call-back
 - Wait for an event
 - Check for the arrival of an event

Hierarchical control

- Global controller
- Application controller
- Node controller
- All nodes participate in control

- CLARISSE overview
- CLARISSE data plane
- CLARISSE control plane

Deployment

- Case studies
- Conclusions
- Future work

ARCOS

- A process can be:
 - A CLARISSE server (a process that serves remotely data access calls)
 - A CLARISSE client (a process that issues data access calls)
 - Both a server and a client

Deployment

- Three combinations of parallel servers / parallel clients
 - 1. Coupled client-server
 - Client and server run in the same process (multi-threaded or not)
 - Locally shared memory
 - 2. Intra-application decoupled
 - One parallel application
 - Separate client and server processes
 - 3. Inter-application decoupled
 - Connect different parallel applications or applications to parallel storage systems
 - Construct parallel workflows

Clarisse deployment

Clarisse parallel data flow example

Clarisse parallel data flow example

- CLARISSE overview
- CLARISSE data plane
- CLARISSE control plane
- Deployment
- Case studies
- Conclusions
- Future work

- Dynamic removal of loaded server
- Parallel I/O scheduling

CLARISSE hierarchical control infrastructure

Aggregate write throughput for injecting load on one server (one operation of 30 Gbytes)

Aggregate write throughput for 3840 processes

Aggregate write throughput for

15360 processes

Aggregate write throughput for 7980 processes

Number of servers

ARCOS

Dynamic removal of loaded server

- Assumes the availability of a load detection mechanism
- One application process detects a loaded server
- Notifies the application controller
- Application controller informs all node controllers and ask them to prepare to start a new epoch with less servers
- Node controller
 - Decides the last operations to be executed from the current epoch
 - Suspends all operation from the future epoch
 - Updates the server map
 - Notifies the application controller
 - Application controller ask all nodes to start a new epoch
- Each node controller resumes the suspended operations if any

Write time (10 operations, 15360 processes, 1024/1023 servers)

- Several applications share the same servers
- The application controller notifies the global controller
- The global controller schedules the next application to be run
- Several policies possible
 - FCFS evaluation

Write timeline for two parallel clients with 960 processes each - FCFS scheduling

Write timeline for two parallel clients with 3840 processes each -No scheduling

Write timeline for two parallel clients with 3840 processes each -FCFS scheduling

- CLARISSE: Middleware for data staging coordination
- Separation of data and control
- Hierarchical control
- Significant benefits
 - Load/Fault aware sever-scale down
 - Parallel I/O scheduling
- Scalable load and fault monitoring is required

- Topology-aware server/aggregator placement JL Colaboration with E. Jeannot, F. Tessier (INRIA), V. Vishnavath (ANL)
- Multiple stage coordination (aggregation burst buffer – file system)
- Load prediction based on Omnisc'IO (Mathieu Dorrier ANL)
- Adaptive buffering in parallel applications workflows (Decaf project)
- Adopt Global Information Bus from Argo and Hobbes (Beacon, Exposé)
- Need for sub-second monitoring and notification

Thank you

40 Florin Isaila et al., ANL & UC3M – CLARISSE: Reforming the I/O stack of high-performance computing platforms

Current problems of storage I/O stack

- Long path from compute nodes to final storage impacts performance (latency, throughput)
- Storage I/O optimizations are local: Difficult to perform global optimizations
- Cross-layer control mechanisms are not available (e.g., for data staging, dynamic load balancing, resilience)

- Software Defined Networking (e.g. Open Flow): global control based on separation of control and data flow
- I/O Flow (Microsoft Research): A Software Defined Storage Architecture for virtualized data centers
- Fast Forward (Intel et al.): redesign of the storage I/O stack
- Argo (Argonne et al.), Hobbes (Sandia et al.): system software for exascale based on an OS/Run-time environment
- Decaf (Argonne): decoupling of tightly coupled workflows
- In-situ and in-transit processing: Data Spaces (Rutgers), Flexpath (Georgia Tech), FlowVR (INRIA), Damaris (INRIA), Glean (Argonne)

