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Introduction

}  Scientific applications (climate, genomics, high energy 
physics, astronomy etc.) ingest, generate, process 
increasingly larger data sets

}  Future high scale supercomputers need to deal efficiently 
with huge amounts of data

}  Current I/O software stack needs to evolve in order to 
meet the oncoming scalability challenges
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I/O	  Forwarding	  

Parallel	  File	  Systems	  

High-‐Level	  I/O	  Library	  

I/O	  Middleware	  

Applica.on	  

Compute	  nodes	  

I/O	  nodes	  

Storage	  nodes	  

Back-‐end	  storage	  

Maps	  applica.on	  abstrac.ons	  
onto	  storage	  abstrac.ons	  (e.g.:	  
HDF5,	  ParallelNetCDF)	  
Reduces	  the	  number	  of	  file	  system	  
calls	  by	  op.miza.ons	  like	  collec.ve	  
I/O	  (e.g.:	  MPI-‐IO)	  
Offloads	  I/O	  func.onality	  from	  
compute	  nodes	  (e.g.:	  Mercury,	  
IOFSL)	  

Offer	  a	  global	  name	  space	  and	  high	  
performance	  storage	  access	  (e.g.:	  
GPFS,	  Lustre,	  PVFS)	  

Block	  and	  storage	  object	  devices	  Storage	  drivers	  	  

Current problems of storage I/O software stack
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}  Optimization: complex stack, deep distributed storage hierarchy

}  Coordination: poor state of programmable control mechanisms are not available  (e.g., for 
data staging, dynamic load balancing, resilience)

}  Exploit data locality
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Data flow in Blue Gene/Q
App 1 
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Data flow in Blue Gene/Q
App 1 App 2 
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Data staging challenges 

}  Concurrent parallel data flows 
}  Lack of data staging coordination 

¨  Among applications 
¨  Between applications and the system

}  Increasing storage hierarchy

}  Storage I/O optimizations are local: Difficult to perform global optimizations 

}  Cross-layer control mechanisms are not available  (e.g., for data staging, 
dynamic load balancing, resilience)

}  Lack of standards for dynamic monitoring of large scale infrastructures (e.g. 
load,  faults)

}  Coupled control and data mechanisms

}  Goal: offer novel mechanisms for data staging coordination to improve 
}  Load balance
}  Resilience 
}  Parallel I/O scheduling
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Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work
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CLARISSE overview

}  Cross-Layer Abstractions and Runtime for I/O 
Software Stack (CLARISSE)
}  A 3-year project started October 2013
}  European “Marie Curie” International Outgoing 

Fellowship
}  Collaboration between ANL and UC3M (Spain)

}  Goals
}  Novel mechanisms for global data staging coordination to 

improve 
}  Load balance, resilience, parallel I/O scheduling, locality exploitation

}  Improve programmability
}  Facilitate extendability
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CLARISSE overview
}  Decouple the data and control 

planes
}  Data plane 
}  Control plane 
}  Policy

}  Cross-layer abstractions and 
run-time
}  Facilitate the flow of control and 

data across the I/O stack
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Policies 

Control plane 
Data plane 



                                         

Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work
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CLARISSE overview

}  Data plane 
}  Design novel abstractions and 

mechanisms for supporting data flow 
optimizations
}  Data aggregation (e.g., collective 

I/O)
}  buffering / caching, data staging
}  load balance
}  data locality (e.g. in-situ and in-

transit data processing) 
}  Parallel data-flows based on the 

these abstractions
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CLARISSE data plane abstractions

}  Five main abstractions
}  Targets
}  Distributions
}  I/O contexts
}  I/O tasks
}  Task queues

}  Objectives
}  Represent the storage I/O activity in terms of these abstractions
}  Offer a logically centralized view of these abstractions  

}  Probably not realistic to expect to have these 
abstractions present at all stack layers 
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CLARISSE abstractions
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Abstractions for the I/O stack
}  Targets

}  Virtual linear spaces
}  Memory, files, storage objects, network buffers
}  put/get interface

}  Distributions
}  Mappings between targets 
}  Mapping functions from non-contiguous regions to a contiguous region 
}  Composing the functions for arbitrary non-contiguous to non-contiguous 

mappings 
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I/O tasks and task queues

}  I/O task
}  I/O related set of actions between a local I/O context and a remote 

I/O context
}  Example of I/O tasks

}  Redistribute data between memory application and network 
buffer

}  Run custom defined computation (e.g. Code-on-Demand of 
EVPath) 

}  Send/receive data from remote nodes, file/storage systems

}  Task queues
}  Queues containing the tasks to be processed by the task engine
}  Control exposed to the control backplane 
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I/O contexts

}  Local to a node

}  Link between one local 
target and N remote targets
}  Local representation of 

vertices in the data flow 
graph

}  Two I/O task queues 
}  Incoming 
}  Outgoing 

}  Assigned system resources
}  E.g. memory, cores

}  Task execution engine
}  Execute task actions 
}  Enforce an I/O scheduling 

policy
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Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work
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Applica.on	  1	   Applica.on	  2	  

Shared	  servers	  

I/O	  nodes	  

File	  system	  

Node	  Controller	  

Applica.on	  Controller	  

Global	  Controller	  

CLARISSE hierarchical control infrastructure



                                         

CLARISSE control backplane

}  Control path: Based on a publish/subscribe substrate (e.g. Beacon) 
}  Processes can subscribe to events having certain properties

}  Associate call-back 
}  Wait for an event 
}  Check for the arrival of an event

}  Hierarchical control
}  Global controller
}  Application controller
}  Node controller
}  All nodes participate in control  
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Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work
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Deployment

}  A process can be:
}  A CLARISSE server (a process that serves remotely data access calls)
}  A CLARISSE client (a process that issues data access calls) 
}  Both a server and a client 

}  Three combinations of parallel servers / parallel clients
1.  Coupled client-server 

}  Client and server run in the same process (multi-threaded or not)
}  Locally shared memory

2.  Intra-application decoupled 
}  One parallel application
}  Separate client and server processes

3.  Inter-application decoupled 
}  Connect different parallel applications or applications to parallel storage systems  
}  Construct parallel workflows
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Parallel 
Program 2 

Clarisse deployment
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Parallel 
Program 2 

Clarisse parallel data flow example
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Parallel 
Program 2 

Clarisse parallel data flow example
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Outline

}  CLARISSE overview
}  CLARISSE data plane
}  CLARISSE control plane
}  Deployment
}  Case studies
}  Conclusions
}  Future work
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Case studies

2048 compute nodes 1.6 GHz 16 
cores 16GB RAM   
5D torus network interconnecting 
compute nodes 
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BG/Q Optical
2x16 Gbit/sec

QDR InfiniBand
32 Gbit/sec

Serial ATA
6.0 Gbit/sec

Gateway nodes
run parallel file system
client software and
forward I/O operations
from HPC clients.

384 16-core PowerPC 
A2 nodes with 16 Gbytes
of RAM each

Commodity 
network primarily 
carries storage traffic.

QDR Infiniband 
Federated Switch

Storage nodes
run parallel file system 
software and manage
incoming FS traffic
from gateway nodes.

SFA12KE hosts VM 
running GPFS servers

Enterprise storage 
controllers and large racks 
of disks are connected via
InfiniBand.

16 DataDirect SFA12KE; 
560 3 Tbyte drives + 32 
200 GB SSD; 16 
InfiniBand ports per pair

GPFS 3.5 
Data: 40 NSD SATA drives  
Max disk throughput: 250 MB/s 
(cache 1000 MB/s ) 
Block size: 8MB 

1 I/O node per 32 
compute nodes 
Client (I/O node) 
cache: 4GB 
 

}  Dynamic removal of loaded server

}  Parallel I/O scheduling

}  Vesta Blue Gene/Q 



                                         

Applica.on	  1	   Applica.on	  2	  

Shared	  servers	  

I/O	  nodes	  

File	  system	  

Inject	  load	  

Node	  Controller	  

Applica.on	  Controller	  

Global	  Controller	  

CLARISSE hierarchical control infrastructure



                                         

Load injection at 1 server (1 application)
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Scale-down number of servers  
(1 application)
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Application controller Node 1 Node 2 
1. subscribe(SLOW_IO_SERVER) 
2. subscribe(IO_SEQ) 

4. publish(STOP_IO(1,2, 3)) 

8. publish(NEW_EPOCH(e)) 

Node 3 

4. publish(SLOW_IO_SERVER (n)) 

6. publish(IO_SEQ (s1)) 
7. wait(NEW_EPOCH) 6. publish(IO_SEQ (s2)) 

7. wait(NEW_EPOCH) 6. publish(IO_SEQ (s3)) 
7. wait(NEW_EPOCH) 

3. subscribe(NEW_EPOCH) 3. subscribe(NEW_EPOCH) 3. subscribe(NEW_EPOCH) 

9. Finish pending I/O from previous epochs, reconfigure server map,  and start new epoch 

Dynamic removal of loaded server



                                         

Dynamic removal of loaded server

}  Assumes the availability of a load detection mechanism 

}  One application process detects a loaded server

}  Notifies the application controller

}  Application controller informs all node controllers and ask them to prepare to 
start a new epoch with less servers

}  Node controller 
}  Decides the last operations to be executed from the current epoch 
}  Suspends all operation from the future epoch
}  Updates the server map 
}  Notifies the application controller 
}  Application controller ask all nodes to start a new epoch

}  Each node controller resumes the suspended operations if any
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Dynamically scaling-down

0 20 40 60 80 100 120 140 160

Removed loaded server

Not removed loaded server

Time(seconds)

Write time (10 operations, 3840 processes, 256/255 servers)

Detect loaded server 
Reconstruct server map 

New epoch with fewer servers 



                                         

Dynamically scaling-down

0 20 40 60 80 100 120 140 160

Removed loaded server

Not removed loaded server

Write time (10 operations, 15360 processes, 1024/1023 servers)



                                         

Global controller Application 1 Application 2 

3. publish(START_IO (1)) 

4. wait(GRANT_IO) 

1. subscribe(START_IO) 
2. subscribe(FINISH_IO) 

5. publish(GRANT_IO(1)) 

6. publish(START_IO(2)) 

7. wait(GRANT_IO) 

9. publish(GRANT_IO(2)) 

8. publish(FINISH_IO(1)) 

10. publish(FINISH_IO(2)) 

data shuffle  

data shuffle 

Parallel I/O scheduling: FCFS



                                         

Parallel I/O scheduling

}  Several applications share the same servers 

}  The application controller notifies the global controller 

}  The global controller schedules the next application to be run 

}  Several policies possible 
}  FCFS evaluation
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0 50 100 150 200 250
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Write timeline for two parallel clients with 960 processes each - No 
scheduling
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Write timeline for two parallel clients with 960 processes each - 
FCFS scheduling



                                         

FCFS scheduling versus no scheduling
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Conclusions

}  CLARISSE: Middleware for data staging coordination
}  Separation of data and control 
}  Hierarchical control
}  Significant benefits

}  Load/Fault aware sever-scale down 
}  Parallel I/O scheduling 

}  Scalable load and fault monitoring is required
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Ongoing and future work

}  Topology-aware server/aggregator placement - JL 
Colaboration with E. Jeannot, F. Tessier (INRIA), V. 
Vishnavath (ANL)

}  Multiple stage coordination (aggregation – burst buffer 
– file system)

}  Load prediction based on Omnisc’IO (Mathieu Dorrier – 
ANL)

}  Adaptive buffering in parallel applications workflows 
(Decaf project)

}  Adopt Global Information Bus from Argo and Hobbes 
(Beacon, Exposé)

}  Need for sub-second monitoring and notification
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Thank you
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I/O	  Forwarding	  

Parallel	  File	  Systems	  

High-‐Level	  I/O	  Library	  

I/O	  Middleware	  

Applica.on	  

Compute	  nodes	  

I/O	  nodes	  

Storage	  nodes	  

Back-‐end	  storage	  

Maps	  applica.on	  abstrac.ons	  
onto	  storage	  abstrac.ons	  (e.g.:	  
HDF5,	  ParallelNetCDF)	  
Reduces	  the	  number	  of	  file	  system	  
calls	  by	  op.miza.ons	  like	  collec.ve	  
I/O	  (e.g.:	  MPI-‐IO)	  
Offloads	  I/O	  func.onality	  from	  
compute	  nodes	  (e.g.:	  Mercury,	  
IOFSL)	  

Offer	  a	  global	  name	  space	  and	  high	  
performance	  storage	  access	  (e.g.:	  
GPFS,	  Lustre,	  PVFS)	  

Block	  and	  storage	  object	  devices	  Storage	  drivers	  	  

Current problems of storage I/O stack
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}  Long path from compute nodes to final storage impacts performance (latency, throughput) 

}  Storage I/O optimizations are local: Difficult to perform global optimizations 

}  Cross-layer control mechanisms are not available  (e.g., for data staging, dynamic load 
balancing, resilience)
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Related work

}  Software Defined Networking (e.g. Open Flow): global control based 
on separation of control and data flow

}  I/O Flow (Microsoft Research): A Software Defined Storage 
Architecture for virtualized data centers

}  Fast Forward (Intel et al.): redesign of the storage I/O stack

}  Argo (Argonne et al.), Hobbes (Sandia et al.): system software for 
exascale based on an OS/Run-time environment 

}  Decaf (Argonne): decoupling of tightly coupled workflows

}  In-situ and in-transit processing: Data Spaces (Rutgers), Flexpath 
(Georgia Tech), FlowVR (INRIA), Damaris (INRIA), Glean (Argonne)
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Blue Gene/Q system at ANL 

Compute nodes 1.6 GHz 16 
cores 16GB RAM   
5D torus network interconnecting 
compute nodes 
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BG/Q Optical
2x16 Gbit/sec

QDR InfiniBand
32 Gbit/sec

Serial ATA
6.0 Gbit/sec

Gateway nodes
run parallel file system
client software and
forward I/O operations
from HPC clients.

384 16-core PowerPC 
A2 nodes with 16 Gbytes
of RAM each

Commodity 
network primarily 
carries storage traffic.

QDR Infiniband 
Federated Switch

Storage nodes
run parallel file system 
software and manage
incoming FS traffic
from gateway nodes.

SFA12KE hosts VM 
running GPFS servers

Enterprise storage 
controllers and large racks 
of disks are connected via
InfiniBand.

16 DataDirect SFA12KE; 
560 3 Tbyte drives + 32 
200 GB SSD; 16 
InfiniBand ports per pair

GPFS 3.5 
Data: 40 NSD SATA drives  
Max disk throughput: 250 MB/s 
(cache 1000 MB/s ) 
Block size: 8MB 

1 I/O node per 128 
compute nodes 
Client (I/O node) 
cache: 4GB 
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